当前位置:主页 > 医学论文 > 口腔论文 >

平台转换技术结合莫氏锥度连接设计种植体负载时的三维有限元分析

发布时间:2019-03-13 16:11
【摘要】:目的本实验研究的目的是采用三维有限元分析的方法,通过改变施加于基台载荷的倾斜角度,研究平台转换技术结合莫氏锥度连接设计的种植体在负载条件下种植体、基台、皮质骨和松质骨各部分的应力分布特点,为种植体-基台连接结构设计的优化,临床使用种植体的选择以及减少种植体临床并发症发生率提供理论研究参考,从而提高种植体修复治疗的远期成功率和临床满意度。方法利用三维有限元分析软件ANSYS Mechanical14.5的建模功能建立1个由种植体、基台以及颌骨骨块组成的三维有限元模型。利用软件的网格划分功能对种植体、基台、颌骨骨块分别进行网格划分,然后将三者装配在一起。接着对装配后的模型施加载荷,载荷大小为150N,模拟为颊舌向3个角度的斜向(偏离种植体轴向15°、30°、45°)载荷和1个沿种植体轴向(即0°)的载荷。除了载荷角度不同以外,其余实验条件均相同,载荷施加模式为集中加载于基台中央位置。结果得到了种植体、基台、皮质骨和松质骨各部分在不同倾斜角度载荷条件下的应力分布云图。有限元应力分析结果表明:在垂直载荷条件下,种植体、基台、皮质骨和松质骨的Von Mises应力峰值均最小,随着载荷倾斜角度的增大,种植体、基台、皮质骨和松质骨的Von Mises应力峰值均相应增大;在种植体轴向载荷及偏离种植体轴向的斜向载荷条件下,种植体和基台的应力集中区域均出现在两者相连接的颈部;不论载荷方向为沿种植体长轴还是偏离种植体长轴,种植体和基台的Von Mises应力值峰值均最大,远大于种植体周围皮质骨和松质骨内的Von Mises应力峰值;种植体周围骨组织内的应力主要分布在皮质骨内,随着载荷倾斜角度的增大,松质骨内的Von Mises应力峰值位置明显向种植体根尖部移位。结论对于平台转换技术结合莫氏锥度连接设计的种植体来说:侧向载荷会增大种植修复体结构内部和种植体周围骨组织的应力;种植体和基台相较于种植体周围的骨组织更易受侧向载荷的影响,种植体和基台连接处的颈部区域存在着潜在的变形或者折断风险,属于种植修复体中的应力危险区域,应注意加强种植体和基台颈部区域的强度,同时尽量避免侧向载荷的出现;这种种植体-基台连接设计可将应力限制在种植体结构内部,有助于减少传递到种植体周围骨组织内的应力,减少种植体颈部周围皮质骨内的应力集中,使皮质骨内的应力分布的更加均匀,从而减少种植体颈部周围皮质骨的吸收,有利于种植体周围边缘骨的保存,进而有利于种植体周围软组织的稳定。
[Abstract]:Objective the purpose of this experiment is to use the method of three-dimensional finite element analysis, by changing the tilt angle of the load applied on the abutment, to study the platform conversion technique combined with the Morse taper connection design of the implant under the loading conditions, the implant, the platform, and so on. The stress distribution characteristics of cortical bone and cancellous bone provide theoretical reference for optimizing the design of implant-abutment connection structure, selecting the clinical use of implant and reducing the incidence of clinical complications of implant. In order to improve the long-term success rate and clinical satisfaction of implant repair treatment. Methods A three-dimensional finite element model consisting of implant, abutment and bone mass of jaw was established by using the modeling function of ANSYS Mechanical14.5, a three-dimensional finite element analysis software. The mesh function of the software was used to mesh the implant, the abutment and the bone mass of the jaw, and then the three parts were assembled together. Then a load of 150N was applied to the assembled model, which was simulated as an oblique load (15 掳, 30 掳, 45 掳) along the axial direction of the implant and a load along the axial direction of the implant (that is, 0 掳), which deviated from the axial direction of the implant to 15 掳, 30 掳, 45 掳, and a load along the axial direction of the implant (that is, 0 掳). Except for the different loading angles, the other experimental conditions are the same, and the loading mode is centralized loading at the central position of the abutment. Results the stress profiles of implant, abutment, cortical bone and cancellous bone under different inclined loads were obtained. The results of finite element stress analysis show that the peak value of Von Mises stress in implant, abutment, cortical bone and cancellous bone is the smallest under vertical loading. With the increase of load tilt angle, the implant, abutment, and implant have the lowest peak stress. The peak value of Von Mises stress in cortical bone and cancellous bone increased correspondingly. Under the conditions of axial load and oblique load deviating from the axial direction of the implant, the stress concentration areas of the implant and the abutment appear in the neck of the connection between the implant and the abutment. No matter the load direction is along or off the implant axis, the peak value of Von Mises stress in implant and abutment is the largest, much higher than the peak value of Von Mises stress in cortical bone and cancellous bone around the implant. The stress in the bone tissue around the implant was mainly distributed in the cortical bone. With the increase of load tilt angle, the peak position of Von Mises stress in cancellous bone shifted to the root tip of implant obviously. Conclusion for the implant designed with the platform conversion technique and Morse taper connection, lateral loading will increase the stress of the bone tissue in the implant structure and around the implant. The implant and abutment are more susceptible to lateral loads than the bone around the implant. There is a potential risk of deformation or break in the neck region between the implant and the abutment, belonging to the stress risk area of the implant prosthesis. Attention should be paid to strengthening the strength of the implant and the neck of the abutment, while avoiding lateral loads as much as possible. This implant-base connection design limits stress within the implant structure and helps to reduce stress transfer to the surrounding bone tissue and stress concentration in the cortical bone around the implant neck. The stress distribution in the cortical bone is more uniform so as to reduce the absorption of the cortical bone around the neck of the implant, which is beneficial to the preservation of the marginal bone around the implant and to the stability of the soft tissue around the implant.
【学位授予单位】:安徽医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R783.6

【参考文献】

相关期刊论文 前6条

1 杨秋燕;陈江;杜志斌;窦宁;;上颌前牙平台转换种植体周围应力分布的有限元分析[J];福建医科大学学报;2010年01期

2 惠光艳;刘宝林;仇敏;;牙槽嵴-种植体系列有限元模型的快速构建方法[J];第二军医大学学报;2008年11期

3 周磊;;牙种植体嵴顶部设计新理念[J];中华口腔医学杂志;2007年11期

4 林野;;当代口腔种植学的进展及其临床意义[J];口腔颌面外科杂志;2006年04期

5 王晓洁,罗教明,杨立,陈继镛,张兴栋;种植体周围骨内应力分布的三维有限元分析[J];实用口腔医学杂志;2005年05期

6 李湘霞,韩科,李国珍,卜奎晨 ,刘莉;下颌骨形态对种植体-骨界面应力分布影响的研究[J];中华口腔医学杂志;2002年06期

相关博士学位论文 前2条

1 张德贵;生物功能牙种植体表面构建与临床研究[D];华南理工大学;2014年

2 汤春波;种植体-基台连接结构的有限元分析及计算机研磨基台的设计研究[D];南京医科大学;2009年



本文编号:2439550

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/kouq/2439550.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c05a4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com