当前位置:主页 > 医学论文 > 口腔论文 >

微种植体支抗远中移动下颌磨牙的三维有限元分析

发布时间:2019-06-26 15:33
【摘要】:目的:远移下颌磨牙是正畸矫治的一个重要方法。传统正畸治疗用组牙支抗推磨牙远移。近年来微种植体被广泛应用,,微种植体支抗也被应用于远移下颌磨牙。本研究通过建立包含牙列、牙周膜、下颌骨、标准MBT直丝弓托槽、弓丝、微种植体的三维有限元模型,研究分析将微种植体植入不同位置、采用不同牙齿移动方式以及拔牙创不同愈合期远移下颌磨牙时牙齿所受应力和初始位移情况,探讨远移下颌磨牙的适宜方式,为临床远中移动下颌磨牙提供生物力学参考。 方法:1.选择一名牙列完整的健康女青年志愿者行头颅螺旋CT扫描,利用有限元建模软件建立包含牙列、牙周膜、下颌骨、标准MBT直丝弓托槽、弓丝、微种植体的三维有限元模型。2.在所建三维有限元模型上,设置三组工况。工况一在下颌第一与第二磨牙间直接置镍钛推簧,模拟镍钛推簧加载150g力,远移下颌第二磨牙;工况二在工况一的基础上将同侧中切牙至第一磨牙整体连扎;工况三在工况一的基础上将微种植体植入于下颌第一与第二磨牙牙根间,微种植体与第一磨牙相连。观察各支抗牙与第二磨牙应力分布及初始位移情况。3.在所建三维有限元模型上,将微种植体植入于下颌第二前磨牙与第一磨牙牙根间,微种植体与第二前磨牙相连,第二前磨牙与第一磨牙间置镍钛推簧同时远移下颌第一与第二磨牙,模拟镍钛推簧分别加载150g、200g、250g、300g力,观察支抗牙与磨牙应力分布。4.将微种植体植入于双侧第二磨牙远中颊侧,直接用镍钛拉簧牵拉双侧侧切牙与尖牙间牵引钩远移整个下颌牙列,模拟镍钛拉簧分别加载200g、300g、400g力。观察微种植体、磨牙与各支抗牙应力分布及初始位移情况。5.在所建三维有限元模型上,将微种植体植入于双侧第二磨牙远中颊侧,直接牵拉远移下颌牙列。将一侧第二磨牙远中设置为第三磨牙拔牙窝,将拔牙窝内组织分别设置为肉芽组织、结缔组织、不成熟骨组织、成熟骨组织,模拟拔牙创不同愈合期,观察拔牙创不同愈合期远移下颌牙列时牙齿应力分布及初始位移情况。 结果:1.建立了精确度较高的,包含牙列、牙周膜、下颌骨、标准MBT直丝弓托槽、弓丝、微种植体的三维有限元模型。2.三种工况下颌第二磨牙牙周膜最大Von-mises应力值分别为24.03kPa、24.03kPa、23.75kPa、低于牙周膜可承受的最大应力水平26kPa。工况二支抗牙牙周膜Von-mises应力值、牙齿Von-mises应力值及初始位移值都比工况一减小,但相差不大。工况三较工况一第二磨牙初始位移值增大,第一磨牙牙周膜最大Von-mises应力值增大,近中向倾斜趋势增大,其余支抗牙牙周膜Von-mises应力值、牙齿Von-mises应力值与初始位移值均明显减小。3.随着加载力值的增加,牙周膜Von-mises应力值呈现逐渐上升趋势。当加载300g时,第二前磨牙与第一磨牙牙周膜最大Von-mises应力值分别为27.85kPa、28.01kPa,均超过26kPa;加载250g力时,第二前磨牙与第一磨牙牙周膜最大Von-mises应力值分别为23.21kPa、23.34kPa,均未超过26kPa。4.当加载400g力时,侧切牙与尖牙牙周膜最大Von-mises应力值分别为27.50kPa、20.67kPa,侧切牙牙周膜最大Von-mises应力值超过26kPa;加载300g力时,侧切牙与尖牙牙周膜最大Von-mises应力值分别为20.62kPa、15.50kPa,均未超过26kPa。下颌第二磨牙在受150g推力后,远中倾斜伴舌向旋转运动;下颌第一与第二磨牙在受250g推力后,远中倾斜运动。下颌牙列在受300g拉力远移后,第一磨牙接近整体远移、第二磨牙远中倾斜趋势减小。这三种工况微种植体最大初始位移值分别为0.27um、0.35um和0.46um,微种植体骨界面皮质骨最大Von-mises应力值分别为3.41GPa、6.07GPa和14.69GPa。5.在拔牙创不同愈合期远移下颌牙列,牙周膜Von-mises应力值均低于26kPa。早期移动牙齿位移有增大的趋势,且相比前牙,磨牙最大初始位移值增大幅度较大。 结论:1.在推下颌第二磨牙远移时,将支抗牙“8”字整体结扎并未能明显增强支抗,微种植体间接支抗能够有效的增强支抗,但支抗牙仍向近中移动,仍有支抗丢失。2.250g力为同时远移下颌第一与第二磨牙的适宜力值。3.300g力为远移整个下颌牙列的适宜力值。4.当需要远移多颗牙齿时,成组牙齿移动较逐个牙齿移动有利于磨牙整体移动,有利于缩短矫治时间。5.可以考虑在下颌第三磨牙拔牙创愈合早期远移下颌牙列。
[Abstract]:Objective: To remove the mandibular molar is an important method of orthodontic treatment. In the traditional orthodontic treatment, the anti-thrust molar is far removed. Microimplant has been widely used in recent years, and the anti-implant of micro-implant is also applied to the long-distance mandibular molar. The three-dimensional finite element model of the dental arch, the periodontal ligament, the mandible, the standard MBT straight wire, the archwire and the micro-implant was established, and the micro-implant was implanted into different positions. In order to provide the biomechanics reference for the movement of the mandibular molar in the clinic, the proper way to move the lower molar is discussed by using the different tooth movement methods and the stress and initial displacement of the teeth in the different healing period of the tooth extraction. Method: 1. The three-dimensional finite element model of the tooth column, the periodontal ligament, the mandible, the standard MBT straight-wire archwire bracket, the arch wire and the micro-implant was established by using the finite element modeling software. 2. On the three-dimensional finite element model, set the three-group work in that condition, a nickel-titanium push-spring is directly arranged between the first and the second molar of the mandibular first and the second molar, the simulated nickel-titanium push-spring is used for loading 150g of force, and the second molar of the lower jaw is far removed; the working condition 2, on the basis of the working condition 1, And the micro-implant is implanted between the first and the second molar roots of the lower jaw and the micro-implant and the first molar phase on the basis of the working condition 3 under the working condition 1. The stress distribution and initial displacement of each bearing and the second molar were observed. 3. on the three-dimensional finite element model, the micro-implant is implanted between the second premolar and the first molar root of the lower jaw, the micro-implant is connected with the second premolar, the second premolar and the first molar are arranged between the second premolar and the first molar, 150 g,200 g,250 g, and 300 g of the Ni-Ti push-spring were loaded to observe the stress distribution of the teeth and the molar. 4. The micro-implant is implanted on the distal buccal side of the bilateral second molar, and the bilateral side incisor and the interdental traction hook are directly pulled by the nickel-titanium tension spring to move the whole lower jaw row, and the simulated nickel-titanium tension spring is respectively loaded with 200g, 300g, 400g, Force. Observe the stress distribution and initial displacement of micro-implant, bruxism and each branch. 5. On the three-dimensional finite element model, the micro-implant was implanted on the distal buccal side of the bilateral second molar, and the submandibular tooth was pulled directly. and the tooth extraction socket inner tissue is respectively arranged as a granulation tissue, a connective tissue, an immature bone tissue, a mature bone tissue, a simulated tooth extraction and a different healing, The stress distribution and initial displacement of the teeth in the submandibular teeth during the different healing period of the tooth extraction condition Fruit:1. The three-dimensional finite element model with higher precision, including the dentition, the periodontal ligament, the mandible, the standard MBT straight-wire archwire bracket, the arch wire and the micro-implant 2. The maximum Von-mises stress of the second molar in the mandibular second molar was 24.03 kPa, 24.03 kPa, 23.75kPa, and the maximum stress level of the periodontal ligament was lower than that of the periodontal ligament. Under the condition of kPa, the stress value of the Von-mises stress and the initial displacement of the tooth Von-mises stress value and the initial displacement are reduced in comparison with the working condition, but the phase The initial displacement value of the second molar increased, the maximum Von-mises stress value of the first molar was increased, and the value of the Von-mises stress and the value of the Von-mises stress and the initial displacement of the tooth were significantly reduced. 3. The Von-mises stress value of the periodontal ligament is gradually increased with the increase of the loading force value. The maximum Von-mises stress values of the second premolar and the first molar were 27.85 kPa and 28.01 kPa, respectively. The maximum Von-mises stress values of the second premolar and the first molar were 23.21 kPa, 23.34 kPa, no more than 26 kP when the 300g was loaded. A.4. When 400 g of force was loaded, the maximum Von-mises stress value of the side incisor and the apical periodontal ligament was 27.50 kPa, 20.67 kPa, the maximum Von-mises stress value of the side incisor periodontal ligament was more than 26 kPa, and the maximum Von-mises stress value of the side incisor and the apical periodontal ligament was 20.62 kPa and 15.50 kPa, respectively, when the 300 g force was applied, and no more than 26. KPa. The second molar of the lower jaw is inclined with the tongue in the distal direction after receiving 150 g of thrust, and the first and second molars of the lower jaw are in the distal direction after receiving the thrust of 250 g. The first molar approach the whole distal movement and the second molar is inclined toward the distal direction after the 300 g of the pulling force is far removed. The maximum initial displacement of the micro-implant was 0.27 um, 0.35um and 0.46 um, respectively. The maximum Von-mises stress value of the micro-implant bone interface was 3.41 GPa, 6.07 GPa and 14.69 GP respectively. A.5. The stress values of the Von-mises of the periodontal membrane were lower than 26 during the different healing period of the tooth extraction. KPa. The early movement of the teeth has a tendency to increase, and the maximum initial displacement of the molar in comparison with the anterior teeth is increased substantially. The degree is large. Conclusion:1. When the second molar of the mandibular second molar is far removed, the whole ligation of the anti-dental "8" is not obviously enhanced, the indirect anchorage of the micro-implant can be effectively enhanced, but the anti-tooth still 2.250 g is the appropriate force to move the mandibular first and second molar at the same time. Good value.4. When a long distance of multiple teeth is required, the movement of the group of teeth is in favor of the whole movement of the molar, which is beneficial to the shortening of the straightening force. Treatment time.5. It can be considered in the early part of the third molar extraction of the mandibular third molar.
【学位授予单位】:安徽医科大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R783.6

【参考文献】

相关期刊论文 前10条

1 吴忠荣,叶翁三杰,刘平先;邻面去釉在口腔正畸中的应用[J];广东牙病防治;2000年02期

2 张新宇;翦新春;;自攻型微螺钉远中移动下颌磨牙的临床运用[J];广东牙病防治;2010年10期

3 魏惺;赵立星;许桢睿;唐娜;赵志河;;关于中国人正畸支抗用微种植钉牙槽骨植入安全区的研究[J];国际口腔医学杂志;2010年02期

4 袁晓,罗颂椒,沈刚,陈振琦,朱庆党;邻牙向拔牙区移动最佳时机选择的实验研究[J];华西口腔医学杂志;2003年04期

5 王颖;熊国平;汪麟;;拔牙创愈合对正畸牙移动的影响[J];华西口腔医学杂志;2006年03期

6 周洁;唐国华;;下颌第二磨牙阻生的病因及治疗方法[J];口腔材料器械杂志;2009年04期

7 赵计林,刘月华,陈扬熙;下牙弓后段可用间隙与下后牙槽高度关系研究[J];口腔正畸学;2002年03期

8 姜世同,王作君,田洪深,钟明红,张卢瑞;双轨式磨牙远移器矫治牙列拥挤[J];口腔医学;2004年03期

9 蔡思嘉;易新;张扬;;成人下颌第三磨牙与下前牙拥挤的相关性研究[J];口腔医学;2012年01期

10 张栋梁,王锐,李业东;应用Tip-back装置直立后牙的临床研究[J];口腔医学研究;2004年06期



本文编号:2506288

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/kouq/2506288.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户af0c5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com