高脂饮食诱导下的肥胖和肥胖抵抗小鼠棕色脂肪组织非震颤性产热变化的研究
[Abstract]:Objective: obesity is caused by the long-term imbalance of energy intake and energy consumption. However, individuals who produce obesity resistance due to high energy intake are common in both population and different animal species, but their mechanism is not clear. Therefore, this study uses C57BL /6J mice to establish high fat diet induced obese animal models. Diet-induced obesity (DIO) and obesity resistant animal model (Diet-induced obesity resistance, DIO-R), explore the role and mechanism of the change of non tremor heat producing function of brown adipose tissue in high fat diet induced obesity and obesity resistance. Methods: 8 Zhou Lingjian healthy male C57BL/6J mice were selected and randomly divided into low fat diet group (LFD) and high In the fat diet group (HFD), low fat diet group was fed low fat diet and high fat diet group was fed a high fat diet, and the weight was recorded every week in the low fat diet group. The body weight of the high fat diet group was significantly higher than that of the low fat control group (> Mean+3SD) in the high fat diet group at tenth weeks. The standard person (Mean+3SD) was defined as a obese resistance mouse. The daily intake of diet was measured in each group of mice in eleventh weeks. Each group was randomly assigned to death after acute cold stimulation (4, 6 hours), and the brown fat tissue (Brown adipose tissue, BAT) and subcutaneous fat tissue (Subcutaneous adipose tissue, SAT) were collected and observed by HE staining. The morphology of adipocyte and the degree of lipid deposition in each tissue; Real-time PCR was used to detect the expression level of target gene of adipose tissue (UCP1, PGC-1 alpha and PRDM-16). The expression of UCP-1 in subcutaneous adipose tissue was observed by immunohistochemical staining. Results: high fat feeding was used for tenth weeks, and the high fat diet group was divided into DIO mice and D groups according to the results of weight and low fat control group. The average daily intake of IO-R mice for five days showed that the average daily energy intake of both DIO and DIO-R mice was significantly higher than that in the control group. After HE staining of adipose tissue, compared with the low fat group, the large fat vacuoles and larger adipocyte silhouette could be observed in BAT and SAT in DIO rats, no matter at normal temperature or 6 hours of cold stimulation. Compared with the control group and the DIO-R rat, the BAT of the DIO-R rat was not significantly different from the SAT and low fat groups for 6 hours at normal temperature or cold stimulation. In BAT, the m RNA level of DIO rats at normal temperature was higher than that of the low fat group. The expression level of UCP-1 did not change under the acute cold stimulation, while the DIO-R rats were at normal temperature or cold stings. The expression level of UCP-1 was obviously up-regulated, and the expression level of M RNA in DIO-2 was significantly higher than that in other groups. The m RNA expression level of Prdm-16 in DIO-R rats was higher than that in low fat group under normal temperature and cold stimulation. Under cold stimulation, the control group and DIO group were significantly higher, while DIR mice did not change. In SAT, under normal temperature or cold stimulation, The expression level of UCP-1 in DIO-R rats was significantly higher than that of the control and DIO mice, and the m RNA expression level of the PGC-1 a gene in the second DIO-R mice was the same as that of the UCP-1 expression. Both the normal and the cold stimuli were significantly higher than those of the control rats and DIO mice. The expression of M RNA in the Prdm-16 gene of DIR mice was higher than that in the control group. At normal temperature, the expression level of M RNA of DIO-2 gene in DIO-R rats was higher than that of the control group and the DIO rat. The results suggest that the enhancement of the non tremor function of the brown adipose tissue and the improvement of the "Beige" level of the subcutaneous adipose tissue are an important reason for the high fat diet to induce the weight gain of the obese resistance mice, and the specific mechanism needs to be further explored.
【学位授予单位】:重庆医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R589.2
【相似文献】
相关期刊论文 前9条
1 王萍玉,张亨菊,吴玲,顾光,王束玫,刘国庆;高脂饮食诱导不同肥胖度大鼠模型的研究[J];中国公共卫生;2003年07期
2 王舒然;麻微微;赵丹;王国秀;蔺威鸣;;高脂饮食诱导肥胖与肥胖抵抗动物模型建立[J];中国公共卫生;2007年07期
3 刘忠荣;白红艳;李祖伦;;藏药烈洗的减肥和促进LDLR表达的作用研究[J];世界科学技术;2006年01期
4 梁颖;李焱;蒋妍;刘珊英;黎锋;肖辉盛;刘丹;严励;傅祖植;;替米沙坦对高脂饮食诱导的大鼠体重增加和血脂异常的影响[J];中国药学杂志;2011年03期
5 袁欣;陈玉嫔;甘丹娜;程玉芳;徐江平;;二甲双胍改善高脂饮食诱导的大鼠学习记忆障碍[J];军事医学;2014年01期
6 肖璐;杨卓;;促红细胞生成素的滴定剂量对高脂饮食诱导的糖尿病的影响[J];天津医药;2011年12期
7 倪阵;闻勤生;赵曙光;张哲;王景杰;王旭霞;刘震雄;;敲除Nrf2促进高脂饮食诱导小鼠肝脏NF-kB的活化[J];现代生物医学进展;2013年30期
8 吴俊;陈琛;曾和松;汪道文;;细胞色素P450基因对高脂饮食诱导不同周龄小鼠动脉粥样硬化的保护作用机制[J];中国分子心脏病学杂志;2011年02期
9 邵华;王珍;;高脂饮食诱导小鼠脂肪肝[J];肝胆胰外科杂志;2005年04期
相关会议论文 前5条
1 高凤英;赵铁耘;;黄连素改善高脂饮食诱导的肥胖大鼠胰岛素抵抗的作用及机制的初探[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
2 杨年红;王重建;许明佳;刘烈刚;孙秀发;;高脂饮食诱导大鼠肥胖易感性差异的研究[A];中国营养学会第九次全国营养学术会议论文摘要汇编[C];2004年
3 李曼;齐艳平;孙学华;朱晓骏;高月求;;参葛方对单纯高脂饮食诱导的非酒精性脂肪肝影响的实验研究[A];2011年长江三角洲中医肝病协作组学术会议暨浙江省中医药学会肝病分会学术年会文集[C];2011年
4 闫明先;李延青;孟敏;任洪波;;核因子-κB在长期高脂饮食诱导的大鼠胰腺损伤中的作用[A];中华医学会第七次全国消化病学术会议论文汇编(上册)[C];2007年
5 龙洋;严芳芳;肖竹;高峗;张祥迅;田浩明;;黄芪注射液灌胃改善高脂饮食诱导肥胖大鼠脂代谢紊乱分子机制的研究[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
相关硕士学位论文 前10条
1 李莫涵;早期非酒精性脂肪性肝病小鼠模型的实验研究[D];北京协和医学院;2015年
2 张情;植物甾醇酯对高脂饮食诱导的非酒精性脂肪肝的预防作用研究[D];上海交通大学;2015年
3 于洋;母代高脂饮食对子代代谢特征的影响及其机制[D];重庆医科大学;2015年
4 刘芳;从炎症角度解析中度高脂饮食诱导肥胖对内分泌代谢及骨骼肌功能的影响[D];吉林大学;2016年
5 白杨;1、Pdcd4对脂肪来源干细胞的调控及其在饮食诱导肥胖中的作用 2、Pdcd4在氧化低密度脂蛋白和高脂饮食诱导应激颗粒形成中的作用研究[D];山东大学;2016年
6 饶小娇;TLR4在高脂饮食诱导的小鼠胰岛素抵抗中的作用及其对主动脉炎性细胞因子产生的影响[D];河北北方学院;2016年
7 艾彦彪;高脂饮食诱导下的肥胖和肥胖抵抗小鼠棕色脂肪组织非震颤性产热变化的研究[D];重庆医科大学;2017年
8 伍菲凡;Akkermansia muciniphila亚型改善高脂饮食诱导的小鼠代谢紊乱及神经退行性变[D];南方医科大学;2017年
9 娜迪拉;短期高脂饮食诱导小鼠肠道TLR4/NF-κB通路表达[D];新疆医科大学;2012年
10 张荷香;高脂饮食诱导的肥胖和肥胖抵抗大鼠脂联素表达水平比较研究[D];华中科技大学;2009年
,本文编号:2164440
本文链接:https://www.wllwen.com/yixuelunwen/nfm/2164440.html