高脂饮食对不同年龄小鼠胰岛素抵抗和胰岛β细胞功能的影响
[Abstract]:OBJECTIVE: With the development of economy in China, great changes have taken place in dietary structure and lifestyle. Obesity and obesity-related metabolic diseases such as glucose metabolism disorders are increasing year by year. The purpose of this study was to investigate the effects of high-fat diet on insulin sensitivity and islet beta cell function in mice of different months of age, and to deepen the effects of age on metabolic stress response in the body. To explore the early markers of islet beta cell decompensation during metabolic stress, and to provide useful clues for further study of the molecular mechanism of islet beta cell failure in the development of metabolic syndrome and diabetes mellitus. Methods: Twenty-four healthy C57BL/6J male mice (average weight 12.66.74 g) were weaned on 21 days, aged 3 months. Twenty-four mice in each age group were randomly divided into two groups: 21 DHF/21 DCD, 3 MHF/3 MCD and 6 MHF/6 MCD. The mice were given 60% high fat diet or normal diet for 12 weeks. The body weight was weighed weekly, fasting blood glucose was measured every three weeks for 6 hours, and glucose tolerance was measured by gavage at 12 weeks. Enzyme linked immunosorbent assay (ELISA) was used to measure fasting serum insulin, pancreas, liver and adipose tissue were taken from mice by neck-cutting method, pancreatic islets were extracted by biliary duct puncture and digestion, and proinsulin was detected by immunoblotting. Results: After 12 weeks of feeding with high-fat diet, the weight of the high-fat diet group was higher than that of the normal diet group. Obvious weight gain (P 0.01) (21DHF 46.18+3.34 g vs. 21DCD 28.51+1.66 g; 3MHF 51.51+2.2 g vs. 3MCD 32.99+1.26 g; 6MHF 46.06+8.07 g vs. 6MCD 36.87+4.67 g). The weight gain of 21DHF mice was the greatest, but the weight gain due to high-fat diet was the greatest at 3MHF. (2) The fasting blood glucose of the high-fat group at 6 hours was higher than that of the control group (21DHF 9.68+4.67 g). 82 vs. 21 DCD 6.60.86 mmol/L; 3MHF 12.86.34 vs. 3 MCD 6.30.42 mmol/L; 6MHF 9.68 1.32 vs. 6 MCD 5.40.97 mmol/L, the differences were statistically significant (P 0.05), 3MHF had the highest fasting blood glucose and the highest fasting blood glucose elevation rate, and 3MHF had the earliest glucose tolerance curve compared with 3MCD. Compared with the normal diet group, the area under the diet was increased in different degrees (21 DHF 32.18+10.45 vs.21 DCD 20.91+1.05; 3 MHF 39.33+3.72 vs.3 MCD 16.74+1.70; 6 MHF 30.19+4.61 vs.6 MCD 17.69+2.26), but there was no significant difference in 21-month-old group (P 0.05), the other age groups (P 0.05), and the glucose tolerance of 3 MHF group was the worst. Resistance to vegetarian: The fasting serum insulin level of the high-fat diet group was significantly higher than that of the normal diet group (P 0.05). Compared with the normal diet group, HOMA-IR was significantly higher and ISI was significantly lower in the high-fat diet group (P 0.05). Insulin resistance was the most obvious in the 3MHF group, and insulin resistance was the most obvious in the 3MHF group. (5) The percentage of proinsulin to total insulin (proinsulin PI + insulin I) [PI / (PI + I) x 100%]: 21DHF 51.53 (+ 4.18%) vs. 21DCD28.20 (+ 6.20%), P 0.01; 3MHF 69.84 (+ 1.55%) vs. 3MCD 30.76 (+ 0.18%), P 0.01; 6MHF 46.65 (+ 2.49%) vs. 6MCD 39.64 (+ 1.28%), P 0.01.3MHF vs. 21DHF, 6MHF, 6 MCD 30.76 (+ 0.18%). (P 0.05). (6) Histological changes: The average islet area of mice fed with high-fat diet at different ages was higher than those fed with normal diet (21DHF 14040 (+ 22274) Um2 vs. 21DCD 11061 (+ 7004) um2, P = 0.62; 3MHF 22759 (+ 36270) Um2 vs. 3MCD 11191 (+ 12509) um2, P = 0.02; 6MHF 22072 (+ 30223) Um2 vs. 6MCD 11424 (+) 174252, P = 0.02); and the same age group fed with high-fat diet was higher than that of mice fed with high- The proportion of beta cells to islet area in the diet group was higher than that in the normal diet group (21DHF 91.40+6.41% vs. 21DCD 85.41+9.47%, P 0.001; 3MHF 94.68+9.06% vs. 3MCD 85.83+9.55%, P 0.001; 6MHF 88.87+7.72% vs. 6MCD 83.08+14.99%, P = 0.04); the ratio of alpha cells to beta cells in the high-fat diet group was lower than that in the normal diet group at the same age (P = 0.04). (21DHF 0.21 + 0.16 vs. 21DCD 0.30 + 0.16, P 0.05; 3MHF 0.18 + 0.07 vs. 3 MCD 0.28 + 0.16 P 0.05; 6MHF 0.22 + 0.09 vs. 6 MCD 0.27 + 0.13 P = 0.09); the mean cross-sectional area of beta cells was not significantly different between the high-fat group and the normal diet group; as long as the compensatory proliferation of islets was caused by the compensatory proliferation of beta cells, the compensatory proliferation of beta cells in 3MHF group was not found. There were different degrees of telangiectasia and large amount of blood cells accumulated in the islets. Fatty liver appeared in the liver of high-fat group, 21DHF fatty liver grade 2; 3MHF fatty liver grade 3; 6MHF fatty liver grade 3; inflammatory cells infiltrated in the peritesticular adipose tissue of each high-fat group. C57BL/6J male mice fed with 0% high-fat diet for 12 weeks could successfully induce obesity, insulin resistance and abnormal glucose metabolism. (2) Compared with 21-day-old and 6-month-old mice, 3-month-old mice fed with high-fat diet had the fastest weight gain, the highest fasting blood glucose, the worst glucose tolerance and the most serious insulin resistance. Metabolic model must consider the biological age of experimental animals, this experiment provides a reference for the selection of other basic research experimental animals. (3) Insulin resistance, impaired fasting blood glucose, impaired glucose tolerance and proinsulin in islets of all ages after high-fat diet feeding mice are obvious. Many, islet compensatory enlargement (mainly beta-cell compensatory hyperplasia), but islet compensatory hyperplasia can not compensate for glucose metabolism load, indicating that high-fat diet affects beta-cell function. (4) This study shows that age plays an important role in metabolic stress response. (5) The increase of proinsulin induced by high fat diet may be an early marker of beta cell decompensation.
【学位授予单位】:天津医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R587.1
【相似文献】
相关期刊论文 前10条
1 张建功,程桦;胰岛β细胞功能测定方法及在不同人群中的应用[J];辽宁实用糖尿病杂志;2000年03期
2 肖常青,邓宏明,庞翠军,李世生,夏宁,于志清;不同方法评价胰岛β细胞功能的结果分析[J];中华内分泌代谢杂志;2001年01期
3 郭妮;胰岛β细胞功能检测方法及评估[J];广西医学;2001年02期
4 杨素兰,马洪波;初诊2型糖尿病患者胰岛β细胞功能观察[J];医师进修杂志;2003年21期
5 项坤三;胰岛β细胞功能研究:中国的信息——国际胰岛素分泌研究组织中国组第一次学术会议简报[J];中华内分泌代谢杂志;2003年04期
6 董凌燕;胰岛β细胞功能的调节[J];国外医学(内分泌学分册);2003年S1期
7 李强,张巾超;临床实用胰岛β细胞功能评估方法的应用及再认识[J];辽宁实用糖尿病杂志;2003年04期
8 马晓静,吴松华;精氨酸与胰岛β细胞功能[J];中国糖尿病杂志;2003年06期
9 贾伟平,项坤三;胰岛β细胞功能评估——从基础到临床[J];中华内分泌代谢杂志;2005年03期
10 贾伟平,项坤三,包玉倩,朱敏,于浩泳,吴松华,马晓静;从基础到临床对胰岛β细胞功能的评估[J];中华内分泌代谢杂志;2005年04期
相关会议论文 前10条
1 徐敏;刘宇;王天歌;李勉;徐佰慧;黄飞;杨枝;张婕;陈宇红;毕宇芳;宁光;;饮酒在吸烟与胰岛β细胞功能下降关系中的作用[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
2 李妍妍;田慧;;老年人群胰岛β细胞功能的评估[A];2006年中华医学会糖尿病分会第十次全国糖尿病学术会议论文集[C];2006年
3 刘瑜;谷昭艳;李春霖;苗新宇;李剑;;自噬功能在衰老相关的胰岛β细胞功能下降中的作用[A];中华医学会第十一次全国内分泌学学术会议论文汇编[C];2012年
4 朱立群;魏华;刘英华;余晓琳;;中西药结合改善成人缓慢进展型自身免疫性糖尿病胰岛β细胞功能的研究[A];第七次全国中医糖尿病学术大会论文汇编[C];2003年
5 张四青;李芳萍;严励;李炎;王斐;黄银琼;;新诊断2型糖尿病伴非酒精性脂肪肝病患者胰岛β细胞功能的临床研究[A];2008内分泌代谢性疾病系列研讨会暨中青年英文论坛论文汇编[C];2008年
6 谷昭艳;李春霖;杜英臻;刘瑜;马丽超;龚燕平;田慧;;衰老对胰岛β细胞功能的影响及分子机制研究[A];2008内分泌代谢性疾病系列研讨会暨中青年英文论坛论文汇编[C];2008年
7 肖正大;郭晶晶;周锦慧;薛霞;;2型糖尿病患者25羟维生素D3与胰岛β细胞功能的关系探讨[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
8 方芳;叶山东;;糖化血红蛋白A1C与初诊2型糖尿病患者胰岛β细胞功能关系[A];中华医学会第十一次全国内分泌学学术会议论文汇编[C];2012年
9 刘娟;李延兵;邵虹;李月霞;袁永红;肖亦斌;翁建平;;不同糖耐量个体胰岛β细胞功能观察及评价[A];2006年中华医学会糖尿病分会第十次全国糖尿病学术会议论文集[C];2006年
10 李新萍;曾正陪;宋爱羚;卢琳;童安莉;陈适;张妲;王永慧;付春莉;李明;;特发性醛固酮增多症患者服用螺内酯后胰岛β细胞功能的变化[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
相关重要报纸文章 前10条
1 李光伟;胰岛β细胞功能评估九法[N];中国中医药报;2004年
2 罗照春;高脂饮食不仅伤“心”还会伤“肾”[N];大众卫生报;2000年
3 罗照春;高脂饮食可导致肾损害[N];中国医药报;2000年
4 黄东临;吸入型胰岛素市场狼烟四起[N];医药经济报;2005年
5 朱立群;刘英华;黄曼;中西医结合治疗LADA疗效切实[N];中国医药报;2005年
6 青云;一餐高脂饮食足矣[N];医药经济报;2002年
7 吴明;湖北一项研究指出:高脂饮食可导致肾损害[N];大众卫生报;2000年
8 ;胰岛素小常识[N];保健时报;2004年
9 ;胰岛素抵抗,怎么办?[N];解放日报;2004年
10 中南大学湘雅二医院老年病科副教授 陈化;什么是“胰岛素抵抗”[N];健康报;2001年
相关博士学位论文 前10条
1 李新;阻断肾素血管紧张素系统对胰岛β细胞功能的效应及机制研究[D];华中科技大学;2009年
2 杨琳;成人隐匿性自身免疫糖尿病的诊断和胰岛β细胞功能的研究[D];中南大学;2003年
3 许华;IGF-1相关通路在高脂饮食对前列腺癌发生及进展影响中的作用[D];复旦大学;2014年
4 何丛;幽门螺杆菌感染对代谢综合征的影响及其与肠道菌群的相关性研究[D];南昌大学;2016年
5 李晓瑾;LRP16基因对胰岛β细胞功能的影响及其机制的研究[D];中国人民解放军军医进修学院;2012年
6 张霞;肝病时胰岛β细胞功能的基础与临床分析[D];重庆医科大学;2002年
7 冯凡;枯草芽孢杆菌表面展示人胰岛素原及其口服降血糖功效评估[D];江苏大学;2015年
8 孙楠;突变型(前)胰岛素原在β细胞功能衰竭中的作用[D];天津医科大学;2011年
9 王洁;羧肽酶E基因多态性、胰岛素原水平与冠状动脉狭窄程度关系的流行病学研究[D];南京医科大学;2008年
10 王瑜;突变型(前)胰岛素原对β细胞功能的影响[D];天津医科大学;2013年
相关硕士学位论文 前10条
1 谢涛涛;高脂饮食对不同年龄小鼠胰岛素抵抗和胰岛β细胞功能的影响[D];天津医科大学;2017年
2 黄帅;新诊断2型糖尿病患者胰岛β细胞功能相关因素分析[D];安徽医科大学;2015年
3 杨梅丽;血清Irisin水平与肥胖和2型糖尿病关系的临床研究[D];苏州大学;2015年
4 林海洋;2型糖尿病患者胰岛β细胞功能状态与心功能的相关性探讨[D];浙江大学;2015年
5 袁欣欣;FK506对大鼠胰岛β细胞功能的影响[D];南昌大学医学院;2015年
6 刘芳;2型糖尿病血清分泌型卷曲相关蛋白4水平及其与胰岛β细胞功能的关系探讨[D];重庆医科大学;2015年
7 付思思;家族史对MHO人群的胰岛素敏感性及胰岛β细胞功能影响的研究[D];重庆医科大学;2015年
8 李翠柳;糖化血红蛋白、空腹血糖及餐后2h血糖与胰岛β细胞功能关系的研究[D];南京大学;2014年
9 周娟;青海地区藏、汉族初发T2DM患者铁代谢与胰岛β细胞功能的相关研究[D];青海大学;2016年
10 孙逊;2型糖尿病胰岛β细胞功能及胰岛素抵抗与微量白蛋白尿的相关性研究[D];青岛大学;2015年
,本文编号:2245268
本文链接:https://www.wllwen.com/yixuelunwen/nfm/2245268.html