Slc35d3对脂肪、肝脏、肾脏组织中脂代谢的影响
[Abstract]:Background and objective Obesity is a complex chronic disease and one of the most important manifestations of metabolic syndrome in the 21st century. Obesity is closely associated with risk factors for cardiovascular disease, such as insulin resistance, diabetes, hypertension, and dyslipidemia. The liver is the largest fatty acid synthesis and metabolic organ in the body. The synthesized fatty acids are released into the blood with the help of apolipoprotein and stored in the lipid bank or provide energy for other tissues and organs. Adipose tissue is the largest energy storage organ in the body. The excess energy is stored in the form of fat. When the energy is insufficient, fat mobilization occurs to meet the needs of the body. Fatty degeneration is easy to occur in parenchymal organs such as liver, heart and kidney, in which lipid metabolism is crucial. SLC35D3 gene encodes a nucleotide transporter. It has been reported that Slc35d3 is a candidate gene for obesity or metabolic syndrome, whose protein is located in the endoplasmic reticulum and interacts with D1R. Mice with Slc35d3 gene mutation can attenuate dopamine signal in striatal neurons. This led to metabolic syndrome, and mutations in the SLC35D3 gene were found in two patients with metabolic syndrome. The purpose of this study was to investigate the effect of SLC35D3 gene on lipid metabolism in fat, liver and kidney tissues. Methods the changes of Slc35d3 mRNA transcription in fat, liver and kidney of DIOB6J (diet-induced obesity) mice, ob/ob (leptin deficient) mice and normal control C57BL/6J mice were detected by fluorescence quantitative PCR. Human SLC35D3 gene was electrotransfected into human adipocytes 6 days after differentiation of 3T3-L1. The effects of SLC35D3 gene on differentiation index and mRNA level of lipid metabolism related gene were observed. At the same time, glucose consumption was also detected. At the same time, the SLC35D3 gene was overexpressed in HepG2 cells by liposome transfection. After two days of transfection, the effect of liposome transfection on the mRNA level of lipid metabolism-related genes was detected. On the third day, 1000uM oleic acid and palmitic acid were used to detect the expression of lipid metabolism-related gene mRNA for 24 h, and the normal medium was restored to culture for 24 h after stimulation, and the effect on the mRNA level of lipid metabolism-related gene was detected. Human SLC35D3 gene was transfected into 293T cells by liposome. The changes of lipid metabolism-related gene transcription level were detected after transfection for 2 days. Results in DIO B6J mice and ob/ob obese mice, the transcription level of Slc35d3 in fat and kidney tissues was significantly lower than that in C57BL/6J control group (P0.01). In the liver tissue of obese mice, the transcription level of Slc35d3 was significantly higher than that of control group (P0.01). After 6 days of differentiation of 3T3-L1 preadipocytes, human SLC35D3 gene was overexpressed. The expression of adipocyte differentiation index gene and lipid metabolism-related gene mRNA was significantly decreased, but glucose consumption was not significantly different. HepG2 cells overexpressed human SLC35D3 gene. The mRNA expression of lipid metabolism-related genes was also significantly decreased, and the mRNA expression of lipid metabolism-related genes was also significantly decreased after 293T cells over-expressed the human SLC35D3 gene. Conclusion SLC35D3 can be used as a candidate gene for the study of obesity or metabolic syndrome because of its down-regulation of adipocyte differentiation related genes and lipid metabolism-related genes in adipose, liver and kidney tissues.
【学位授予单位】:北京协和医学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R589.2
【相似文献】
相关期刊论文 前10条
1 叶平;;前言——脂代谢与老年心脑血管疾病[J];实用老年医学;2010年04期
2 赵万春;范成文;;脂代谢与免疫球蛋白在慢性阻塞性肺疾病中的表达研究[J];检验医学与临床;2013年20期
3 吴育红,张爱珍;甘油二酯对脂代谢的影响及其可能机制[J];浙江医学;2005年04期
4 虞定海;;6个月健身气功·五禽戏锻炼前后中老年人脂代谢变化[J];中国运动医学杂志;2008年05期
5 刘延杰;季虹;荣海钦;;锌α_2糖蛋白对体质量及脂代谢的影响[J];医学综述;2010年02期
6 林烂芳;胡斌;李淑元;吕明;杨亚军;袁子宇;王笑峰;;不同劳动者类型脂代谢相关表型的差异分析[J];现代生物医学进展;2012年16期
7 侯茗,李磊;影响脂代谢的因素及防治[J];长春中医学院学报;2001年03期
8 尹黎明,石元刚;燕麦对脂代谢影响的研究进展[J];局解手术学杂志;2004年05期
9 余国膺;;知难而进,研究糖、脂代谢复杂网络[J];中国心脏起搏与心电生理杂志;2007年04期
10 康忠汉,刘小鹏;微量元素与脂代谢[J];广东微量元素科学;1995年09期
相关会议论文 前10条
1 孙桂菊;蔡慧珍;刘福康;左平国;刘莎;;餐后脂代谢在不同人群脂肪代谢研究中的应用[A];达能营养中心第十三届学术研讨会“膳食脂肪与健康”论文集[C];2010年
2 胡金鹿;陈伟平;卓玛丽;;蚕蛹油对高脂膳食大鼠血脂及脂代谢相关酶的影响[A];膳食变迁对民众健康的影响:挑战与应对——第二届两岸四地营养改善学术会议学术报告及论文摘要汇编[C];2010年
3 常永生;;KLF12在脂代谢中的相关作用[A];第11届全国脂质与脂蛋白学术会议论文汇编[C];2012年
4 高淑杰;张明亮;吴翊馨;张肃;;玉米肽对中年人脂代谢的影响[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年
5 汪俊军;;脂代谢相关指标检测技术与认识新进展[A];第一次全国中西医结合检验医学学术会议暨中国中西医结合学会检验医学专业委员会成立大会论文汇编[C];2014年
6 易伦朝;吴海;袁大林;梁逸曾;;基于HRFAB-MS-ULDA的2型糖尿病脂代谢谱判别分析[A];中国化学会第26届学术年会化学信息学与化学计量学分会场论文集[C];2008年
7 刘婧;温宇;胡秀芬;张敏;;促酰化蛋白对3T3-L1脂肪细胞脂代谢的影响[A];中华医学会第十七次全国儿科学术大会论文汇编(上册)[C];2012年
8 郑素洁;;无症状健康体检者尿酸水平与脂代谢关系的研究[A];中华医学会第七次全国中青年检验医学学术会议论文汇编[C];2012年
9 吉玲;王与章;崔吉君;;真珠钙对高血压病患者脂代谢的影响[A];钙剂的基础研究及临床应用——'96全国第一届钙剂研讨会论文录[C];1996年
10 徐杰;李国平;唐蔚青;黎健;;在HepG2细胞中11β-HSD1通过SREBP1调控脂代谢[A];第十二届全国脂质与脂蛋白学术会议论文汇编[C];2014年
相关重要报纸文章 前3条
1 李山;德找到9个干扰脂代谢的基因变异[N];科技日报;2010年
2 记者 白毅;首张秀丽线虫脂代谢途径网络图绘成[N];中国医药报;2013年
3 李明;国内首个脂代谢肿瘤新药德氮吡格有望两年后使用[N];医药经济报;2007年
相关博士学位论文 前1条
1 陈志;奶山羊乳腺组织乳脂代谢关键miRNA的筛选及功能验证[D];西北农林科技大学;2017年
相关硕士学位论文 前8条
1 苑萌萌;Slc35d3对脂肪、肝脏、肾脏组织中脂代谢的影响[D];北京协和医学院;2017年
2 李春燕;日粮烟酸水平对生长獭兔生产性能、血清抗氧化及脂肪代谢的影响[D];山东农业大学;2015年
3 龙小娟;牛AGPAT6基因遗传多态性研究及与脂代谢相关功能的验证[D];吉林大学;2016年
4 楚璐雅;玛咖对人体抗氧化能力、免疫功能以及脂代谢的影响[D];北京体育大学;2016年
5 吴晶;Kisspeptin-10对鹌鹑产蛋启动及肝脏脂代谢的影响研究[D];南京农业大学;2012年
6 刘悦;甘油激酶与核受体Nur77相互作用及其对肝脏脂代谢调控研究[D];天津大学;2012年
7 李玉婷;IL-17、p-S6在狼疮性肾炎患者肾脏组织中的表达[D];昆明医科大学;2016年
8 赵艳君;抗增殖蛋白在单侧输尿管梗阻大鼠肾脏组织中的表达及全反式维甲酸的干预[D];广西医科大学;2009年
,本文编号:2378216
本文链接:https://www.wllwen.com/yixuelunwen/nfm/2378216.html