趋化因子受体CCR7介导高脂饮食小鼠下丘脑胰岛素抵抗的机制研究
[Abstract]:Chronic inflammatory response-mediated insulin resistance is a major cause of obesity development for type 2 diabetes mellitus (T2DM), and therefore, obesity is considered one of the key risk factors for inducing T2DM. A lot of clinical data show that when the energy consumed by the human body far exceeds the energy required by the metabolism, the body fat accumulation can be caused, the energy metabolism in the body is balanced, and the obesity is caused. The research has shown that the obesity tissue contains a large amount of fat cells, free fatty acids (FFA) contained in these cells can promote the production and release of a large number of inflammatory factors, and the long-term effect forms an inflammatory environment of the body, and the hypothalamus (hythaloamus) is the food regulation center of the body. It is also the metabolic control center. The research shows that the hypothalamic inflammation reaction can reduce the sensitivity of the body to the insulin and the leptin, lead to the resistance of the insulin and the leptin, break the regulation and balance of the body to the energy intake, and finally induce the T2DM. Thus, the inflammatory response plays an important role in the hypothalamic insulin resistance (IR) and leptin resistance (LR). Chemokines are a class of small-molecular-weight proteins that can promote the migration of leukocytes to the site of infection, which can promote the release of various inflammatory factors through the specific binding with their receptors, and play an important role in the inflammation reaction of the body. Our early studies have shown that the chemokine receptor CCR7 gene is highly expressed in the hypothalamus, which suggests that CCR7 may be involved in the pathophysiology of the hypothalamic IR. Therefore, this study focuses on the molecular mechanism of the hypothalamic IR in the T2DM mouse induced by high-fat diet. The 6-week-old male ICR mice were randomly divided into two groups. One group was fed with a common feed containing 11.4% fat, which was set as the control group (Ctrl group), and the other group was fed with a high-fat diet (HFD group) containing 60% of fat, which was set as the model group, and the two groups were treated for 16 weeks, respectively. The body weight, blood glucose and food consumption of each group of mice were measured and recorded during the weekly fixed time, and the glucose tolerance (OGTT) and the insulin resistance (ITT) evaluation were performed on the two groups at Week 16, and the results showed that the c of the mice in the HFD group was significantly higher than that in the control group (P 0.001). And the HFD group mice produced glucose intolerance and insulin resistance. After comprehensive analysis of the experimental data, the construction of the model mice with T2DM was evaluated. In the first week, two groups of mice in the control group and the HFD group were further divided into four groups. The overall group was as follows: Ctrl Sramble sgRNA group, HFD Sramble sgRNA group, HFD CCR7sgRNA group, and Ctrl CCR7 sgRNA group. The CCR7 gene (virus titer of 1 x 106TU/ ml) was injected at 5.68 mm below the skull surface by using the CRISPR-Cas9 gene editing technique to knock out the CCR7 gene of the hypothalamus of the mouse (using the brain stereolocator, respectively, to the VMH region at the bottom of the bilateral basal part of the hypothalamus, 1.58 mm after the anterior and the outer side of the middle line, and 5.68 mm below the surface of the skull. The weight, blood sugar and food consumption of each group of mice were measured and recorded on a weekly basis, and the weight, blood sugar and food consumption of each group of mice were measured and recorded on a weekly basis. After the physiological indexes were stable, the brain three-dimensional positioning and injection operation was performed for about 5 weeks, and western blotting technology was used. WB and IF were used to measure the expression of CCR7 in the hypothalamus of four groups of mice, and the knockout of CCR7 gene in the hypothalamus of the corresponding treatment group was evaluated. The results showed that the body weight and blood glucose level of the mice in the HFD Sramble sgRNA group were significantly higher than that of the control Sramble sgRNA group (P 0.001), and the body weight and blood glucose level of the HFD CCR7 sgRNA group decreased significantly compared with that of the HFD Sramble sgRNA group (P 0.001). There was no significant difference in body weight and blood glucose levels in the control CCR7 sgRNA group compared to the Ctrl Sramble sgRNA group; this indicated that the glucose intolerance and insulin resistance of the mice in the HFD CCR7 sgRNA group were improved. In addition, that food consumption in each group was stable and there was no significant group difference in each stage of the experiment. The expression of NLRP3, ASC, Caspase-1, IL-1 and the expression of IRS-1 and Akt in the hypothalamus of mice with different treatment groups, such as NLRP3, ASC, Caspase-1, IL-1, and the expression of IRS-1 and Akt, were detected by WB and IF. The results showed that: The expression of CCR7 protein in the hypothalamus of the HFD group was significantly higher than that of the control group, while the expression of the protein, such as NLRP3, ASC, Caspase-1, IL-1, and the like, increased significantly, and the phosphorylation of the insulin receptor substrate 1 (IRS-1) was enhanced. After the specific knockout of the CCR7 gene, the HFD CCR7 sgRNA group compared with the HFD Sramble sgRNA group. The expression of the above-mentioned inflammatory pathway protein decreased significantly (P0.01), and the phosphorylation of the IRS-1 protein was decreased; while the expression of the inflammation pathway-related protein and the expression of the IRS-1 protein did not change significantly compared with the control Sramble sgRNA group, and the results of the IF detection were consistent with the WB detection results. In conclusion, CCR7 mediates the activation of an NLRP3 inflammatory body in the hypothalamus of a high-fat diet mouse, activates the Caspase-1 protein, promotes the maturation and release of the inflammatory factors such as IL-1 and TNF-1, amplifies the hypothalamic inflammation reaction, negatively regulates the hypothalamic insulin signal and the leptin signal, and finally leads to IR and LR, These results suggest that CCR7 is a key candidate for the treatment of the hypothalamic IR of T2DM.
【学位授予单位】:江苏师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R587.1
【相似文献】
相关期刊论文 前10条
1 傅诚强;胰岛素抵抗和择期性手术[J];国外医学.外科学分册;2001年03期
2 贾伟平;中国人群胰岛素抵抗的状况[J];国外医学.内分泌学分册;2002年04期
3 宁光;李长贵;洪洁;汤正义;李果;龚艳春;彭怡文;郭冀珍;沈卫峰;商淑华;罗邦尧;陈家伦;;胰岛素抵抗基础和临床研究[J];医学研究通讯;2002年11期
4 姚小皓,沈凯,李学军;胰岛素对中枢神经系统疾病的影响[J];生理科学进展;2003年01期
5 柯红林;;2型糖尿病中胰岛素抵抗发生机制的研究进展[J];国外医学(老年医学分册);2003年03期
6 常桂娟;胰岛素抵抗的环境因素[J];现代诊断与治疗;2004年02期
7 米杰 ,张力;胰岛素抵抗[J];中华预防医学杂志;2004年04期
8 王继旺,张素华,任伟,杜娟,陈静,包柄楠,汪志红,苗青;吸烟与胰岛素抵抗的相关性调查与分析[J];中国公共卫生;2004年08期
9 阳柳雪;刘红;;可溶性肿瘤坏死因子受体2与胰岛素抵抗[J];中国医学文摘.内科学;2004年01期
10 康艳明;阳跃忠;;胰岛素抵抗与缺血性心脑血管病变[J];中国医学文摘.内科学;2004年02期
相关会议论文 前10条
1 陈艳秋;宗敏;华莉;李臻;肖菲;孙建琴;;2型糖尿病患者肝脏脂肪与胰岛素抵抗的关系[A];中国营养学会老年营养分会第七次全国营养学术交流会“营养与成功老龄化”暨国家级继续教育项目“神经系统疾病医学营养治疗”资料汇编[C];2010年
2 陈艳秋;陈敏;宗敏;华莉;李臻;张鑫毅;孙建琴;;2型糖尿病患者肝脏脂肪分布与胰岛素抵抗[A];老年营养研究进展与老年营养供餐规范研讨会暨糖尿病肾病医学营养治疗进展学习班资料汇编[C];2011年
3 宋晓敏;耿秀琴;郭长磊;;胰岛素抵抗几个相关因素在公安人群中的状态与分析[A];中华医学会第六次全国内分泌学术会议论文汇编[C];2001年
4 游捷;陈瑶;黄培基;林哲章;;血清可溶性肿瘤坏死因子受体与胰岛素抵抗的关系[A];中华医学会第六次全国内分泌学术会议论文汇编[C];2001年
5 谢彬;陈上云;郭坚;刘薇;劳干诚;;监测真胰岛素观察胰岛素抵抗与胰岛素敏感性[A];中华医学会第六次全国内分泌学术会议论文汇编[C];2001年
6 尹义辉;王经武;;消胰抗治疗胰岛素抵抗的临床研究[A];第七次全国中医糖尿病学术大会论文汇编[C];2003年
7 吕圭源;刘赛月;;中药抗胰岛素抵抗研究进展[A];浙江省2005年中药学术年会论文集[C];2005年
8 王晓静;刘正齐;;一种简便实用且较准确评估胰岛素抵抗的新方法[A];全国中西医结合内分泌代谢病学术会议论文汇编[C];2006年
9 白秀平;李宏亮;杨文英;肖建中;王冰;杜瑞琴;楼大钧;;脂肪分存顺序与肝脏及肌肉胰岛素抵抗的关系[A];2006年中华医学会糖尿病分会第十次全国糖尿病学术会议论文集[C];2006年
10 孙勤;李伶;杨刚毅;欧阳凌云;陈渝;刘华;唐毅;Gunther Boden;;小鼠扩展胰岛素钳夹术的建立[A];2006年中华医学会糖尿病分会第十次全国糖尿病学术会议论文集[C];2006年
相关重要报纸文章 前10条
1 ;胰岛素小常识[N];保健时报;2004年
2 ;胰岛素抵抗,怎么办?[N];解放日报;2004年
3 中南大学湘雅二医院老年病科副教授 陈化;什么是“胰岛素抵抗”[N];健康报;2001年
4 张家庆 (教授);适度锻炼身体改善胰岛素抵抗[N];上海中医药报;2003年
5 本报记者 韩晓英;注射胰岛素会成瘾吗[N];中国中医药报;2002年
6 张怡梅 刘 斌;恶性肿瘤与胰岛素抵抗[N];中国中医药报;2003年
7 健康时报特约记者 陈锦屏;胖人易发“胰岛素抵抗”[N];健康时报;2007年
8 殳雪怡;胰岛素抵抗 有办法“抵抗”吗[N];家庭医生报;2007年
9 刘文山;胰岛素抵抗[N];家庭医生报;2007年
10 孟怀东;“致命四重奏”与胰岛素抵抗[N];中国医药报;2007年
相关博士学位论文 前10条
1 殷青青;胰岛素抵抗大鼠脑组织损伤机制以及番茄红素的保护作用研究[D];山东大学;2015年
2 施琳颖;二氢杨梅素通过诱导细胞自噬改善骨骼肌胰岛素抵抗的作用及其机制研究[D];第三军医大学;2015年
3 隆敏;下丘脑室旁核神经肽Y长期过表达诱导外周胰岛素抵抗作用机制研究[D];第三军医大学;2015年
4 黄文辉;高胰岛素抑制肾脏尿酸排泄的基础与临床研究以及氯沙坦的干预机制[D];兰州大学;2015年
5 付锋;缺血后心肌胰岛素抵抗促发缺血性心力衰竭及其机制[D];第四军医大学;2015年
6 王宗保;NO-1886对糖脂代谢的影响及机制研究[D];南华大学;2014年
7 张真稳;小檗碱协同甘丙肽降低2型糖尿病鼠脂肪组织胰岛素抵抗的实验研究[D];扬州大学;2015年
8 何奕多;TNF-α对脂联素多聚化修饰及分泌调控的研究[D];华中农业大学;2015年
9 陈璇;白虎二地汤调控胰岛素信号通路改善2型糖尿病胰岛素抵抗的研究[D];南京中医药大学;2015年
10 许凤;海藻中新型PTP1B抑制剂对db/db糖尿病模型的改善与作用机制的研究[D];青岛大学;2016年
相关硕士学位论文 前10条
1 李晨;辛伐他汀、胰岛素联合用药对糖尿病大鼠下颌骨骨折愈合的影响[D];河北联合大学;2014年
2 贾晓娇;血清Vaspin、u樗亍⒅卦谌焉锾悄虿』颊咧兴郊坝胍鹊核氐挚沟墓叵礫D];河北医科大学;2015年
3 黄声;胰岛素抵抗与认知功能障碍的关系研究[D];福建医科大学;2015年
4 牛尚梅;骨骼肌PGC-1α在高脂导致的胰岛素抵抗中的作用机制[D];河北医科大学;2015年
5 安雨;血清视黄醇结合蛋白-4与2型糖尿病及肥胖的相关性研究[D];河北医科大学;2015年
6 陈旭;高胰岛素水平导致肥胖相关机制研究[D];郑州大学;2015年
7 刘晨曦;津力达改善棕榈酸诱导的肌细胞胰岛素抵抗的机制[D];河北医科大学;2015年
8 段力园;津力达颗粒对高脂诱导的HepG2细胞胰岛素抵抗影响的研究[D];河北医科大学;2015年
9 张东蛟;津力达对高脂诱导的胰岛素抵抗ApoE基因敲除小鼠脂肪组织中脂代谢的影响[D];河北医科大学;2015年
10 李贵平;黄芪甲苷对高胰岛素诱导人肾小球系膜细胞损伤的保护作用及机制研究[D];安徽医科大学;2015年
,本文编号:2493038
本文链接:https://www.wllwen.com/yixuelunwen/nfm/2493038.html