内质网应激—自噬对脑缺血再灌注能量代谢障碍与氧化应激的影响
发布时间:2018-02-17 01:05
本文关键词: 脑缺血再灌注 能量代谢障碍 氧化应激 内质网应激 自噬 囊泡融合 p62 NSF 出处:《吉林大学》2014年博士论文 论文类型:学位论文
【摘要】:能量代谢障碍是脑缺血再灌注损伤的重要原因。脑缺血再灌注时线粒体氧化磷酸化障碍在导致ATP生成减少的同时,还产生大量的活性氧(reactive oxygenspecies,ROS),引发氧化应激。脑缺血再灌注时,除了ATP含量减少、自由基生成增加等引起细胞损伤之外,一些适应性调控机制在脑缺血再灌注过程中的作用也引起了人们的关注。 内质网应激与自噬是细胞对损伤刺激的适应性反应。内质网应激-自噬可以维持细胞内环境的稳态平衡,具有一定的保护性作用。内质网应激时未折叠蛋白反应可以激活自噬,自噬又可以通过降解错误折叠或未折叠蛋白减轻内质网的负荷,抑制内质网应激的过度激活,同时产生的降解产物也为机体细胞新蛋白质的合成、细胞结构的重建以及ATP的生成提供原料。但过度激活的内质网应激-自噬又能够加重细胞损伤,甚至导致细胞死亡。最近的研究结果提示,内质网应激-自噬在脑缺血再灌注引起的能量代谢障碍和氧化应激过程发挥重要的作用,但其作用机制尚不十分明了。 Keap1-Nrf2-ARE信号转导途径是机体氧化应激条件下主要的防御机制。自噬相关蛋白p62作为一种多功能蛋白,不仅仅具有清除损伤的细胞器、降解异常聚集的蛋白等作用,而且,具有多种蛋白相互作用区的p62在细胞应激、细胞生存等多种信号转导途径中发挥衔接分子的作用。已有研究表明在氧化应激条件下,p62可与Nrf2之间形成一个正反馈环路,通过Keap1-Nrf2-ARE信号途径,促进抗氧化基因的表达。因此,探讨多功能蛋白p62在脑缺血再灌注损伤过程中的作用,可能进一步阐明细胞自噬与氧化应激之间的调控机制。 自噬晚期自噬体和溶酶体的融合是一个典型的囊泡融合事件。NSF,作为一种ATP酶,通过利用自身水解ATP产生的能量,介导囊泡融合完成后SNARE复合物的解离,释放SNARE进入下一个囊泡融合进程,是囊泡融合顺利进行必需的一个关键蛋白。体外研究表明,只有细胞质内可溶性的NSF在ATP存在条件下才能介导囊泡的融合,如果可溶性的NSF发生聚集或ATP缺失将会丧失该功能。可见,ATP产生与囊泡融合关键蛋白NSF的功能存在着关联,通过复制体外细胞实验性脑缺血再灌注模型,观察能量代谢障碍时囊泡融合关键蛋白NSF的变化,进而探讨脑缺血损伤过程中能量代谢障碍与细胞自噬之间可能的调控机制。 目的: 本研究基于能量代谢障碍/氧化应激在引起细胞损伤的同时,可能会激活细胞内质网应激-自噬等适应性反应,探讨内质网应激-自噬在细胞能量代谢障碍与氧化应激中的作用,为阐明脑缺血再灌注损伤的机制提供新的线索。 方法: (1)体内实验: 1)线栓法阻塞大脑中动脉复制大鼠局灶性脑缺血再灌注模型。 2)TTC染色和HE染色判断脑缺血再灌注后脑皮质损伤情况。 3)免疫组织化学染色检测Keap1和Nrf2的表达;免疫印迹检测内质网应激相关蛋白、自噬相关蛋白和凋亡相关蛋白的表达、RT-PCR法检测Keap1-Nrf2-ARE下游基因的表达。 (2)体外实验: 1)建立体外培养PC12细胞ATP缺失再恢复模型;MTT法检测细胞生存率的变化;Western Blot检测自噬和内质网应激相关蛋白的表达。 2)建立体外培养CHO细胞ATP缺失再恢复模型;LDH法检测细胞的损伤改变;差速离心和线性甘油梯度离心获取不同蛋白组分;Western Blot检测不同组分NSF蛋白表达。 结果: (1)体内实验: 1)神经缺陷评分、TTC及HE染色结果表明,随着缺血时间的延长,大鼠脑缺血再灌注引发的大脑皮质损伤逐渐加重。 2)缺血1H再灌注24h,,大脑皮质泛素化蛋白表达增加,Grp78表达升高,Bcl-2的表达升高,Bax的表达下降;随着缺血时间的延长,至缺血3H再灌注24h,大脑皮质泛素化蛋白表达明显增加, CHOP/GADD153表达显著升高,Bax表达升高,Bcl-2表达下降。 3)缺血1H再灌注24h及缺血1.5H再灌注24h时,自噬共轭蛋白Atg12-Atg5和LC3-PE表达增加;在缺血3H再灌注24h,自噬共轭蛋白Atg12-Atg5和LC3-PE表达显著下降。 4)脑缺血1H再灌注24h时,Nrf2核定位增加,上调其下游抗氧化基因NQO1、GCLM和HO1mRNA的表达。随着缺血时间的延长,缺血3H再灌注24h时,Nrf2核定位减少,激活下游抗氧化基因NQO1和HO1的能力下降。 5)随着缺血时间的延长,p62mRNA表达水平先增加后降低,而p62蛋白水平仅仅在缺血3H再灌注24h显著增加。 (2)体外实验: 1)无糖条件下轻度ATP缺失再恢复,PC12细胞生存率略有升高,此时LC3-II和p62蛋白变化不明显;有糖条件下轻度ATP缺失再恢复,PC12细胞生存率相对于重度ATP缺失再恢复明显升高,此时Grp78蛋白表达显著升高,p62蛋白表达显著下降;重度ATP缺失再恢复,PC12细胞生存率明显下降,此时LC3-II和p62蛋白表达显著升高;3-MA抑制自噬降低PC12细胞在ATP缺失条件下的生存率。 2)ATP缺失引起CHO细胞细胞质内可溶性NSF蛋白聚集和细胞损伤。NSF高表达可减轻ATP缺失再恢复诱导的CHO细胞损伤。 结论: 1.内质网应激-自噬途径参与调控脑缺血再灌注损伤。短时间脑缺血后再灌注,内质网应激-自噬的激活起一定的保护性作用;长时间脑缺血后再灌注,内质网应激反应过度激活,同时机体自噬的降解能力下降,加重脑损伤。 2.脑缺血再灌注时,自噬通过p62与Keap1-Nrf2-ARE信号途径相关联,共同作用减轻氧化应激、抑制内质网应激的过度激活。 3.体外实验抑制自噬能够加重细胞损伤,提示内质网应激-自噬途径在体外培养细胞能量代谢障碍过程中具有一定的细胞保护作用。 4.体外实验发现,能量代谢障碍导致细胞质内可溶性的自噬相关蛋白NSF聚集失活,丧失介导囊泡融合的功能,进而可能抑制自噬降解途径,引发细胞损伤。 综上,我们认为脑缺血导致的脑细胞损伤与能量代谢密切相关,而适度的内质网应激-自噬在能量代谢障碍引起的细胞损伤中具有一定的保护性作用。表明脑细胞内质网应激-自噬的相关研究可能为脑缺血再灌注损伤的预防与治疗提供了新的线索。
[Abstract]:Energy metabolism is an important cause of cerebral ischemia reperfusion injury. Cerebral ischemia reperfusion mitochondrial oxidative phosphorylation disorders resulting in decreased ATP generation at the same time, also produce large amounts of reactive oxygen species (reactive OXYGENSPECIES, ROS), caused by oxidative stress. Cerebral ischemia reperfusion, but reduced ATP content and increased free radical generation caused by cell damage, some adaptive mechanisms of reperfusion in the process of action also attracted the attention of people in cerebral ischemia.
Endoplasmic reticulum stress and autophagy is adaptive reaction to injury stimulation. Endoplasmic reticulum stress autophagy can maintain the homeostasis of intracellular environment, has a protective effect. The endoplasmic reticulum stress when unfolded protein response can activate autophagy, autophagy and misfolding by mistake or degradation of unfolded protein reducing Er load, inhibit excessive activation of endoplasmic reticulum stress, degradation products generated at the same time for the synthesis of new proteins in the body's cells, cell structure reconstruction and ATP production to provide raw materials. But the excessive activation of endoplasmic reticulum stress autophagy and can aggravate the injury of the cells, and even lead to cell death. Recent studies showed that energy metabolism and the process of oxidative stress in the endoplasmic reticulum stress autophagy induced by cerebral ischemia and reperfusion plays an important role, but its mechanism is not very clear.
The Keap1-Nrf2-ARE signal transduction pathway is the primary defense mechanism for oxidative stress. Under the condition of autophagy related protein p62 as a multifunctional protein, not only can eliminate the damage of organelles, protein degradation, abnormal aggregation and interaction with various proteins in the cell area of p62 stress, play a role in cell survival and molecular cohesion many signal transduction pathways. Studies have shown that under oxidative stress conditions, a positive feedback loop between p62 and Nrf2, through the Keap1-Nrf2-ARE signaling pathway, promote antioxidant gene expression. Therefore, to explore the process of multifunctional protein p62 in cerebral ischemia reperfusion injury in the role may further clarify the regulatory mechanism between cells autophagy and oxidative stress.
The late autophagosome and lysosome fusion of autophagy is a typical vesicle fusion event.NSF, as a ATP enzyme, produced by using its ATP hydrolysis energy mediated vesicle fusion dissociation of SNARE complex after the release of SNARE into a vesicle fusion process, vesicle fusion is carried out smoothly a key protein required. In vitro studies showed that only in the cytoplasm of soluble NSF in the presence of ATP conditions can be mediated by fusion of vesicles, if the soluble NSF aggregation and ATP deletion will lose the function. Obviously, ATP fusion protein NSF function key are associated with vesicles by replication in vitro experimental cerebral ischemia reperfusion model, to observe the changes of energy metabolism during vesicle fusion protein NSF, and to explore the regulation of cerebral ischemic injury between energy metabolism and autophagy may. Mechanism.
Objective:
This study is based on the energy metabolism disorder / oxidative stress on cell damage caused by at the same time, may activate adaptive response to endoplasmic reticulum stress - autophagy, to investigate the role of endoplasmic reticulum stress and autophagy in cell energy metabolism and oxidative stress, and provides new clues for elucidating the mechanism of cerebral ischemia reperfusion injury.
Method锛
本文编号:1516858
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/1516858.html
最近更新
教材专著