当前位置:主页 > 医学论文 > 神经病学论文 >

MiRNAs调控BDNF-TrkB通路抑制神经元痫样放电的机制研究

发布时间:2018-03-22 19:22

  本文选题:癫痫 切入点:酪氨酸激酶受体B 出处:《天津医科大学》2016年博士论文 论文类型:学位论文


【摘要】:研究目的:Micro RNA(mi RNA)是一类内源性小分子非编码RNA,作为转录后调控因子,参与癫痫发病机制的多个蛋白编码基因的表达。脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)-酪氨酸激酶受体B(tropomyosin-related kinase receptor type B,Trk B)信号通路是癫痫发生的关键通路,选择性中枢神经系统内敲除Trk B基因能完全阻止点燃诱发的癫痫发作。有关研究发现mi R-204-5p(mi R-204)能通过调控Trk B受体影响肿瘤的发生和转移,深入研究mi R-204是否能通过Trk B信号通路调控癫痫的发生,有望为临床癫痫治疗提供新的思路。根据上述研究背景提出本论文的研究目的如下:1.以原代培养的大鼠海马神经元的痫样放电模型为研究对象,通过Trk B受体及其下游信号通路,研究mi R-204抑制神经元痫样放电和电压门控性Ca2+通道(voltage-gated calcium channel,VGCC)电流的机制。2.在mi R-204抑制神经元痫样放电的研究基础上,选取前期研究的在癫痫神经元模型中异常表达并且与BDNF-Trk B通路相关的mi R-132-3p(mi R-132)为靶点,研究过表达mi R-132后神经元痫样放电和VGCC电流的改变,为探索其他类型mi Rs在癫痫发病机制中的作用提供创新思路与方法。研究方法:1.原代培养的海马神经元经无镁细胞外液处理3h,建立神经元痫样放电模型。2.Mi R-204调控Trk B信号通路抑制神经元痫样放电的机制研究。(1)通过实时荧光定量PCR(real-time quantitative polymerase chain reaction,q RT-PCR)检测神经元痫样放电模型中mi R-204的表达改变。(2)应用包含mi R-204-p GLVH1/GFP的慢病毒载体转染原代培养的海马神经元以过表达mi R-204,通过q RT-PCR检测过表达mi R-204后Trk B m RNA的表达改变。(3)Trk B下游通路的代表性信号分子包括Akt,PLCγ1,ERK1/2和CREB。通过western blotting以这些信号分子的磷酸化蛋白水平和总蛋白水平的比值反映信号分子的激活程度,研究神经元痫样放电模型模型中mi R-204调控Trk B下游信号分子活性的相关机制。(4)应用全细胞膜片钳电流钳技术检测神经元痫样放电模型的放电特性,神经元痫样放电模型过表达mi R-204后检测痫样放电频率的变化。(5)应用全细胞膜片钳电压钳技术检测神经元痫样放电模型VGCC电流和稳态激活与失活特性的变化,神经元痫样放电模型过表达mi R-204后VGCC特性的改变。3.Mi R-132调控BDNF影响神经元痫样放电的机制研究。为研究其他mi Rs在癫痫发病机制中的作用是否一致,选取前期研究发现在神经元痫样放电模型中表达上调的mi R-132为靶点,研究mi R-132对神经元痫样放电和VGCC电流的调控,并进一步探讨其调控机制。(1)通过q RT-PCR检测神经元痫样放电模型中BDNF m RNA的表达,慢病毒转染过表达mi R-132后观察BDNF m RNA的表达改变,研究mi R-132调控BDNF表达的机制。(2)应用全细胞膜片钳电流钳技术检测神经元痫样放电模型分别过表达mi R-132和孵育外源性BDNF后痫样放电频率的变化。(3)应用全细胞膜片钳电压钳技术检测神经元痫样放电模型分别过表达mi R-132和孵育外源性BDNF后VGCC电流特性的改变。研究结果:1.Mi R-204调控Trk B信号通路抑制神经元痫样放电。(1)神经元痫样放电模型中mi R-204的表达下调:与正常对照组神经元相比,癫痫模型组中mi R-204的表达水平明显下降(P0.001,n=6)。(2)Mi R-204负调控Trk B受体m RNA的表达:Trk B m RNA的表达水平在癫痫模型组和对照组无明显差异(P0.05,n=6)。癫痫模型组过表达mi R-204后Trk B m RNA表达明显降低(P0.001,n=6)。(3)Mi R-204抑制Trk B受体下游信号通路的活性:神经元痫样放电模型中Akt信号通路活性无明显改变,PLCγ1(P0.001,n=6)、ERK1/2(P0.001,n=6)以及CREB(P0.001,n=6)信号活性均明显增强。在神经元痫样放电模型中过表达mi R-204后PLCγ1信号活性无明显改变(P0.05,n=6),而ERK1/2信号活性(P0.01,n=6)以及CREB信号活性(P0.001,n=6)均明显降低。证明mi R-204主要调控Trk B受体下游的ERK1/2-CREB信号通路。(4)Mi R-204抑制神经元的痫样放电:全细胞电流钳检测正常对照神经元表现为偶发的动作电位发放;而癫痫模型组表现为持续高频的动作电位发放,放电频率比正常对照组明显增高(P0.001,n=14)。癫痫模型组过表达mi R-204后神经元的痫样放电频率明显降低(P0.001,n=14)。(5)Mi R-204抑制神经元痫样放电模型中神经元VGCC电流和活性:神经元痫样放电模型VGCC的最大电流密度增加(P0.001,n=10),稳态激活曲线的半数激活电压降低(P0.01,n=10),稳态失活曲线的半数失活电压升高(P0.01,n=10),表明神经元痫样放电模型VGCC电流增强,通道更易激活难以失活。神经元痫样放电模型过表达mi R-204后,最大电流密度降低(P0.001,n=10),稳态激活曲线的半数激活电压增高(P0.05,n=10),稳态失活曲线的半数失活电压降低(P0.01,n=10),说明mi R-204抑制神经元痫样放电模型中神经元的VGCC电流和活性。2.神经元痫样放电模型中mi R-132抑制BDNF加重痫样放电。(1)在神经元痫样放电模型中mi R-132抑制BDNF m RNA的表达:癫痫模型中BDNF m RNA的表达水平明显上调(P0.001,n=6)。对照神经元过表达mi R-132后BDNF m RNA的表达水平明显增高(P0.001,n=6),而神经元痫样放电模型过表达mi R-132后BDNF m RNA的表达水平明显下降(P0.001,n=6)。(2)BDNF抑制神经元痫样放电,而mi R-132逆转这一作用加重神经元痫样放电:癫痫模型组过表达mi R-132后放电频率明显增高(P0.01,n=14)。癫痫模型组孵育BDNF后放电频率明显降低(P0.001,n=14),但在此基础上过表达mi R-132后放电频率又增高到癫痫模型组水平(Mg2+-free+BDNF+mi R-132:Mg2+-free=7.11±2.90:6.54±2.64,P0.5,n=14)。说明BDNF对神经元痫样放电有抑制作用,而在mi R-132过表达时这种抑制作用消失,mi R-132能明显加重神经元痫样放电。(3)BDNF抑制痫样放电神经元VGCC电流和活性,而mi R-132能逆转这一作用加重VGCC电流和活性:癫痫模型组过表达mi R-132后VGCC最大电流密度增加(P0.01,n=10)。癫痫模型组孵育BDNF后VGCC最大电流密度降低(P0.05,n=10),稳态激活曲线的半数激活电压增高(P0.001,n=10),稳态失活曲线的半数失活电压降低(P0.01,n=10),但在此基础上过表达mi R-132后逆转了VGCC特性的改变。说明BDNF对痫样放电神经元增强的VGCC有抑制作用,而mi R-132则相反加强痫样放电神经元VGCC的电流和活性。结论:1.Mi R-204调控Trk B信号通路抑制神经元痫样放电。(1)神经元痫样放电模型中mi R-204的表达下调。(2)Mi R-204抑制Trk B m RNA的表达。(3)在神经元痫样放电模型中Trk B下游信号通路PLCγ1和ERK1/2-CREB激活,而其中ERK1/2-CREB信号通路的激活能被mi R-204抑制。(4)Mi R-204抑制神经元痫样放电模型的痫样放电和VGCC电流。2.Mi R-132抑制BDNF加重神经元痫样放电。(1)在神经元痫样放电模型中mi R-132抑制BDNF m RNA的表达。(2)BDNF抑制神经元痫样放电和VGCC电流活性,而mi R-132能逆转这一作用加重神经元痫样放电和加强VGCC电流活性。
[Abstract]:Objective: Micro RNA (MI RNA) is a class of endogenous small molecule non encoding RNA, as a factor regulating transcription, expression of multiple genes encoding proteins involved in the pathogenesis of epilepsy. Brain derived neurotrophic factor (brain-derived neurotrophic, factor, BDNF) - tyrosine kinase receptor B (tropomyosin-related kinase receptor type B. Trk B) signaling pathway is a key of epilepsy, selective central nervous system Trk B gene knockout can completely prevent the kindling induced seizures. The study found that MI R-204-5p (MI R-204) can be affected by the regulation of Trk B receptor in tumor progression and metastasis, in-depth study of MI R-204 is Trk through B signaling pathway the regulation of the occurrence of epilepsy, is expected to provide new ideas for clinical treatment of epilepsy. According to the above research objective of this dissertation was put forward as follows: 1. rat hippocampal neurons in primary culture The epileptiform discharge model element as the research object, through the Trk B receptor and its downstream signaling pathways, inhibition of neuronal epileptiform discharges and voltage-gated Ca2+ channels of MI R-204 (voltage-gated calcium channel, VGCC) based on the mechanism of.2. current in MI R-204 inhibits neuronal epileptiform discharge on the selection of the previous studies in epileptic neuron the model and associated with the abnormal expression of BDNF-Trk B mi R-132-3p (MI R-132 pathway) as the target, studied the changes of neurons epileptiform discharge and VGCC current expression of MI R-132, provides a new idea and method for exploring the role of other types of MI Rs in the pathogenesis of epilepsy. Methods: hippocampal neurons after 3H liquid magnesium free cell culture 1. primary, establish mechanism of epileptiform discharges of neuron model.2.Mi R-204 control Trk B signal pathway and inhibition of neuronal epileptiform discharges (1) by real-time fluorescence. Light PCR (real-time quantitative polymerase chain quantitative reaction, Q RT-PCR) to change the expression of epileptiform discharges of neuron model in MI R-204. (2) lentiviral vector containing mi R-204-p GLVH1/GFP transfection in primary cultured hippocampal neurons by overexpression of MI R-204, by Q RT-PCR detection expression of MI R-204 changed after Trk B m RNA. (3) the representative signal molecule Trk B downstream pathways including Akt, PLC ERK1/2 and CREB. gamma 1, the ratio of the total protein level and phosphorylated protein levels of these molecules reflect the degree of activation of signal molecules by Western blotting, the related mechanism of epileptiform discharges of neuron model in MI R-204 the regulation of Trk B downstream signal molecular activity. (4) the discharge characteristics using the whole cell patch clamp current clamp technique to detect neuronal epileptiform discharge model, epileptiform discharges of neuron model over expression of MI R-204 After the change detection of epileptiform discharges. (5) change and inactivation activation using the whole cell patch clamp voltage clamp technique to detect neuronal epileptiform discharge model of VGCC current and steady state, the change of.3.Mi R-132 regulatory mechanism of BDNF neurons epileptiform discharges of neurons epileptiform discharge model VGCC characteristic expression of MI after R-204. In order to investigate the role of other mi Rs in the pathogenesis of epilepsy is consistent, from previous study found that upregulation of MI R-132 expression as a target in neuronal epileptiform discharge model, MI R-132 control on epileptiform discharges of neuron and VGCC currents, and further explore its mechanism. (1) the expression of Q RT-PCR detection epileptiform discharges of neuron model with BDNF m RNA, lentivirus overexpression of MI R-132 BDNF m to observe the expression change of RNA, to study the mechanism of MI regulation of R-132 BDNF expression. (2) using the whole cell patch Detection of epileptiform discharges of neuron model clamp current clamp technique respectively the expression changes of discharge frequency of epileptiform mi R-132 and incubated with exogenous BDNF. (3) used to detect neuronal epileptiform discharge model of whole cell patch clamp technique respectively the change of expression of VGCC R-132 and current characteristics of MI incubated with exogenous BDNF. Results: 1.Mi R-204 regulation of Trk B signaling pathway inhibits neuronal epileptiform discharge. (1) expression of epileptiform discharges of neuron model in MI R-204: compared with the normal control group of neurons, the expression level of MI R-204 in epileptic model group decreased significantly (P0.001, n=6). (2) the expression of Mi R-204 Trk B negative regulation M receptor RNA: there was no significant difference in the expression level of Trk B m RNA in epilepsy model group and the control group (P0.05, n=6). The epilepsy model group expression of MI R-204 Trk B m RNA expression decreased significantly (P0.001, n=6). (3) Mi R-204 Trk inhibits B receptor downstream Pathway: Akt pathway activity of epileptiform discharges of neuron in the model did not change significantly, PLC gamma 1 (P0.001, n=6), ERK1/2 (P0.001, n=6) and CREB (P0.001, n=6) activity was significantly enhanced. The epileptiform discharges of neuron model of overexpression of MI in R-204 after PLC gamma 1 signal activity no significant change (P0.05, n=6), and ERK1/2 (P0.01, n=6) activity and CREB activity (P0.001, n=6) were significantly decreased. The results showed that ERK1/2-CREB signaling pathway downstream of MI R-204 regulatory Trk B receptor. Mi (4) R-204 inhibits epileptiform discharges of neurons: whole cell current clamp detection control neurons showed spike and occasional; epilepsy model group showed sustained spike frequency, the discharge frequency was significantly higher than the normal control group (P0.001, n=14). The epilepsy model group expression of MI R-204 after the epileptiform discharges of neurons decreased significantly (P0.0 01, n=14). (5) Mi R-204 inhibits neuronal VGCC currents and epileptiform discharges of neuron activity in the model: the maximum current density of epileptiform discharges of neuron model of VGCC (P0.001, n=10) increase, half of the steady-state activation curve of the activation voltage decreased (P0.01, n=10), half of the steady-state inactivation curve of inactivation voltage rise (P0.01, n=10), showed epileptiform discharges of neuron model VGCC current enhancement, more difficult to activate channel inactivation. Epileptiform discharges of neuron model over expression of MI R-204, the maximum current density decreased (P0.001, n=10), half of the steady-state activation curve of the activation voltage increased (P0.05, n=10), half of the steady-state inactivation curve the inactivation of voltage drop (P0.01, n=10), VGCC current and the activity of.2. neurons epileptiform discharge model mi R-204 inhibitory neurons epileptiform discharge model in MI R-132 inhibited BDNF aggravate epileptiform discharges. (1) in neuronal epileptiform discharge model in MI R-1 The expression of M RNA: 32 inhibition of BDNF was significantly up-regulated in BDNF m RNA epilepsy model (P0.001, n=6). The control over the expression level of BDNF m RNA neurons significantly increased the expression of MI R-132 (P0.001, n=6), and the epileptiform discharges of neuron model over expression of MI R-132 expression level of BDNF RNA was m decreased (P0.001, n=6). (2) BDNF inhibits epileptiform discharges of neuron, and the role of MI R-132 reversal aggravating neuronal epileptiform discharges: epilepsy model group expression of MI R-132 after the discharge frequency increased significantly (P0.01, n=14). The epilepsy model group after BDNF incubation and discharge frequency was significantly reduced (P0.001, n=14), but on the basis of over expression of MI R-132 after discharge frequency increased to the level of epilepsy model group (Mg2+-free+BDNF+mi R-132:Mg2+-free=7.11 + 2.90:6.54 + 2.64, P0.5, n=14). The results showed that BDNF had inhibitory effects on neuronal epileptiform discharge, while overexpression of MI R-132 when this suppression Mi R-132 effect disappeared, can aggravate epileptiform discharges of neuron. (3) BDNF inhibits epileptiform discharges of neurons in VGCC and MI and the current activity, R-132 can reverse the effects of increased VGCC current and activity: the epilepsy model group expression of MI R-132 VGCC the maximum current density increased (P0.01, n =10). The epilepsy model group incubation of VGCC the maximum current density decreased after BDNF (P0.05, n=10), half of the steady-state activation curve of the activation voltage increased (P0.001, n=10), half of the steady-state inactivation curve of inactivation voltage (P0.01, n=10) decreased, but based on the expression of MI R-132 after the reversal of the VGCC characteristics of the BDNF on the change. Epileptiform discharges of neurons enhanced the inhibitory effect of VGCC, MI and R-132 on the contrary strengthen current and activity of epileptiform discharges of neurons in VGCC. Conclusion: 1.Mi R-204 regulation of Trk B signaling pathway inhibits neuronal epileptiform discharge. (1) epileptiform discharges of neuron model mi R-204 table Reach down. (2) the expression of Mi R-204 B m RNA. The inhibition of Trk (3) in epileptiform discharges of neuron model Trk B signaling pathways downstream of PLC gamma 1 and ERK1/2-CREB activation, and the activation of ERK1/2-CREB signaling pathway can be inhibited. Mi R-204 (4).2.Mi epileptiform discharge and VGCC current R-132 Mi R-204 inhibition of neuronal epileptiform discharge model of inhibition of BDNF aggravate neuronal epileptiform discharge. (1) expression in neurons of epileptic discharge in the model of MI R-132 m RNA. The inhibition of BDNF (2) BDNF inhibits epileptiform discharges of neuron and VGCC current and MI activity, R-132 can reverse the effects of increased neuron epileptiform discharges and strengthening VGCC current activity.

【学位授予单位】:天津医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R742.1

【相似文献】

相关期刊论文 前10条

1 王淑娟,刘佩云,刘英高;痫样放电的脑电图分析[J];齐鲁医学杂志;2003年03期

2 王竹珍,孙淑芝;视频脑电对间歇期痫样放电的监测[J];医学理论与实践;2005年05期

3 刘衍素;夏阳;吴宏伊;赖永秀;尧德中;;痫样放电大鼠颅内脑电信号的同步分析[J];生物医学工程学杂志;2007年03期

4 韦世革;黄瑞雅;蒙兰青;袁胜山;;痫样放电与血清神经元特异性烯醇酶变化的关系研究[J];右江民族医学院学报;2008年05期

5 袁丰莲,孙琪,袁永生;过量利他林引起痫样放电2例报道[J];临床脑电学杂志;1997年04期

6 姜克明,李拴德,郑育贤,唐宗椿,席志峰;癫痫患者痫样放电时间分布与临床(摘要)[J];立体定向和功能性神经外科杂志;1998年03期

7 丁美萍,沈可芬,吴永红,钟国栋;痫样放电的偏侧优势[J];临床脑电学杂志;1998年04期

8 姜克明,李拴德,郑育贤,唐宗椿,席志峰;癫痫患者痫样放电时间分布与临床[J];立体定向和功能性神经外科杂志;1999年01期

9 赵玉梅,方元勋,程士樟;儿童痫样放电与慢性胃炎相关性初探[J];中国实用儿科杂志;2000年11期

10 刘佩云,夏青忱,刘英高;358例痫样放电的脑电图分析[J];现代电生理学杂志;2001年02期

相关会议论文 前7条

1 郭华;夏阳;刘斐;刘衍素;;基于时频分析的痫样放电大鼠的脑电动态变化特征[A];Proceedings of the 7th Biennial Meeting and the 5th Congress of the Chinese Society for Neuroscience[C];2007年

2 李桂花;徐江涛;杨俊;宋永斌;张晓馨;于春芳;张立群;吕芸;;原发性癫痫患者夜间“痫样放电”影响因素分析[A];中国睡眠研究会第六届学术年会论文汇编[C];2010年

3 夏阳;刘衍素;游自立;尧德中;;Pilocarpine诱导的皮层-海马癫痫脑电节律的复杂度分析[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(上册)[C];2007年

4 尚伟;张焕丽;;癫痫与睡眠[A];山东省2013年神经内科学学术会议暨中国神经免疫大会2013论文汇编[C];2013年

5 钟国栋;王钟瑾;李菊凤;吴永江;;不同激发试验对颞叶EP的诱发价值[A];2006年浙江省神经病学学术年会论文汇编[C];2006年

6 吴文秀;朱蓓蕾;夏念格;邹胜珍;何金彩;;夜间发作性肌张力障碍1例附文献复习[A];2012年浙江省神经病学学术年会论文集[C];2012年

7 廖米荣;林邦长;潘君泰;王史辉;;癫痫合并烧伤21例诊治体会[A];第八届全国烧伤外科学年会论文汇编[C];2007年

相关博士学位论文 前3条

1 相蕾;MiRNAs调控BDNF-TrkB通路抑制神经元痫样放电的机制研究[D];天津医科大学;2016年

2 吕玉丹;脑电图技术在癫痫患者睡眠障碍、认知障碍及痫样事件识别中的应用研究[D];吉林大学;2014年

3 刘旭;雌激素对海马神经元痫样放电及大鼠癫痫发作的影响及机制研究和培养基酚红最佳浓度的探讨[D];复旦大学;2012年

相关硕士学位论文 前6条

1 李桂花;原发性癫痫夜间“痫样放电”的相关因素分析[D];新疆医科大学;2011年

2 梁玉丽;儿童良性癫痫伴中央颞区棘波患儿痫样放电、睡眠纺锤波与睡眠结构的研究[D];河北医科大学;2010年

3 丁智勇;痫样放电大鼠海马诱发场电位及癫痫脑电同步分析[D];电子科技大学;2007年

4 吴菡;视频脑电监测中发作间期痫样放电和癫痫发作的记录潜伏期[D];浙江大学;2015年

5 朱弘;190例癫痫患者视频脑电图临床分析[D];大连医科大学;2013年

6 黄家俊;癫痫患者注意网络功能的研究[D];泸州医学院;2009年



本文编号:1650030

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/1650030.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户604b1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com