缺血性卒中后DAPK1死亡信号介导突触损伤的机制研究
[Abstract]:[background]
Stroke is the primary cause of brain injury. Ischemic stroke is a serious neurological disease caused by the interruption of cerebral blood flow, resulting in local cerebral ischemia. The patients suffer from language impairment, visual loss, paralysis and even death. The incidence, mortality and disability rate of stroke remain high. With the aging of the population, the incidence of stroke is increasing. The rate is rising and is recognized as a common refractory disease that seriously endangers human health and life safety. Currently, the treatment for cerebral ischemia damage is very limited, and the only effective treatment is thrombolytic therapy with tissue plasminogen activator (tPA). However, safety considerations and thrombolytic therapy are considered. The treatment window is narrow (4.5 hours), and most patients can only get symptomatic support treatment. Therefore, it is very important to explore new intervention methods and treatment methods to combat brain injury and protect nerve cells against ischemic stroke.
Neuronal synaptic damage after ischemia (including presynaptic and postsynaptic damage) is the early pathophysiological basis of synaptic transmission disorders and neuronal death. Our previous study found that death-associated protein kinase (DAPKl) is a Ca2+/calmodulin-dependent serine/threonine. Kinases, which are activated in ischemic brain regions and mediate neuronal death, are abundantly expressed in the somas and processes of neurons, mainly by promoting microtubule assembly to maintain axonal transport, neuronal morphology and signal exchange between neurons. Many serine/threonine kinases (including DAPK1) are involved in abnormal hyperphosphorylation of Tau protein in neurodegenerative disorders. However, whether DAPKl affects Tau phosphorylation during ischemic brain injury and which damage effects of DAPK1 on neurons are mediated by Tau have not been reported so far. As a protein abundantly expressed in presynaptic, n can regulate glutamate transmission, participate in neuronal synaptic apoptosis, and cause neurodegenerative changes and neuronal death. Whether activated DAPK1 acts with Caytaxin and induces Caytaxin phosphorylation, which mediates presynaptic injury after ischemic stroke, remains unclear.
[Objective]
(1) To elucidate the cellular and molecular mechanisms of DAPK1 interacting with Tau, DAPKl and Caytaxin mediating neuronal death after ischemic stroke, and to provide evidence that Tau and Caytaxin are downstream specific substrates of DAPK1 and participate in neuronal death after ischemic stroke. Activated DAPK1 causes abnormal phosphorylation of Tau protein after ischemic stroke Abnormal dendritic spine aggregation leads to the loss of dendritic spine, and the pre-synaptic activation of DAPK1 phosphorylated Caytaxin promotes the expression of Cayatxin, causing synaptic transmission dysfunction.
(2) To explore the therapeutic strategy of ischemic stroke by blocking the interaction between DAPK1 and Tau by synthesizing small molecular polypeptides, so as to lay a theoretical foundation for the development of therapeutic drugs for ischemic stroke.
Middle cerebral artery embolization (MCAO) and light ischemia (PT) were used to construct cerebral ischemia model in 4-month-old mice or sham-operated mice as control. C57BL/6J mice, CaMK II alpha-Cre mice, DAPK1-KD loxp/loxp, DAPK1-KD-/-mice were used as study objects. CaMK II a-Cre mice were hybridized with DAPK1-KD loxp/loxp mice and PCR was used to identify positive. DAPK1-KD-/- mice were induced by tamoxifen; cerebral blood flow during MCAO was monitored by Doppler Cerebral Blood Flowmeter and Laser Speckle Cerebrovascular Imaging; cerebral ischemic area was detected by magnetic resonance (MRI) and TTC staining; degeneration was identified by Fluoro-Jade C (FJ) staining and TUNEL staining, respectively. Number of degenerative and apoptotic neurons; Adeno-associated virus (AAV-EGFP) was used to infect dendritic spines; Western blot (WB) was used to detect DAPK1, Phospho-myosin light chain (pMLC), Tau, Caytaxin, sheared-caspase 3, synapse-related protein PSD95, GluR1, SynapIsin and other eggs after ischemia. The interaction between DAPK1 and Tau, DAPK1 and Caytaxin was studied in vivo and in vitro by immunofluorescence double labeling and immunoprecipitation. The expression system was constructed in HEK293T cells to co-transfect different mutants of DAPK1 (DAPK1 KD, DAPK1 CaM, DAPK1 DD, DAPK1K42A) with Tau, and the interaction between DAPK1 and Tau was identified. Structural domains of DAPK1 immunoprecipitated phosphorylated proteins were detected by mass spectrometry; DAPK1-KD+/+ primary neurons were infected by AAV-Tau-WT and rAAV-Tau-S262A viruses, and DAPK1-KD-/-primary neurons were infected by 1AAV-Tau-WT. The damage of dendritic spines was observed and the AMPA receptor-mediated miniature excitatory postsynaptic potentials (mEPs) were recorded. The amplitude and frequency of EPSC, synthetic peptides blocked the interaction between DAPK1 and Tau, and intravenously injected TAT-R1D small molecule peptides to observe whether they reversed stroke injury. Behavioral methods such as water maze and open field were used to detect the learning, memory and activity of cerebral ischemic mice and those after TAT-R1D polypeptide treatment.
[results]
1. the damage of dendritic spine was earlier than that of apoptosis during cerebral ischemia.
The dendritic spine density decreased significantly from 2 h to 24 h after reperfusion in MCAO group, and the synaptic related proteins PSD95, GluR1 and Synapsin I also decreased significantly. The number of TUNEL positive cells increased significantly from 6 h to 24 h after reperfusion, and the number of shear Caspase 3 increased significantly at 12 h after reperfusion.
2.DAPK1 interacts with Tau through kinase domain, and DAPK1 and Caytaxin interact at presynaptic level.
The results of immunofluorescence double labeling and immunoprecipitation confirmed that DAPK1 and Tau and DAP K1 and Caytaxin interacted to form a complex under hypoxic-ischemic condition, but the expression of DAPK1 and Tau did not change after ischemia, while the expression of Caytaxin increased significantly on the ischemic side compared with the contralateral side. DAPK1 specifically binds to Tau via the amino-terminal kinase domain in the cell line expression system; DAPK1 and Caytaxin co-localize in neurons by immunofluorescence double labeling; both immunofluorescence and immunoblotting show that DAPK1 and Caytaxin are pre-synaptic; interaction between DAPK1 and Caytaxin after ischemic stroke and hydrogen peroxide treatment in neurons Obviously enhanced.
3. DAPK1 was activated during cerebral ischemia, phosphorylation of Tau Ser262 site and phosphorylation of Caytaxin Ser46 site.
After MCAO, the activity of DAPK1 was significantly higher than that of sham-operated group, which showed that the level of pMLC was significantly increased; GPS21 software predicted that DAPK1 might phosphorylate Tau Ser262 site; MS results showed that DAPK1 phosphorylated Tau Ser262 site, phosphorylated Caytaxin Ser46HEK293T cells co-transfected DAPK1 and Tau-WT group, Tau pS262 and shear type. Caspase 3 levels were significantly elevated, but not in DAPK1 and Tau-S262A co-transfected mice; Tau pS262 levels were elevated in C57BL/6J mice after 2 and 24 hours of MCAO, while pS202, pS422, and GSK3P levels were not significantly changed.
4. phosphorylation of Tau Ser262 site results in dendritic spine injury.
After 9 days of culture, primary neurons infected with rAAV-Tau-WT virus showed loss of dendritic spines, elevated levels of Tau pS262, decreased levels of synaptic-related proteins such as PSD95, GluRl and Synapsin I, and decreased amplitudes and frequencies of AMPA receptor-mediated miniature excitatory postsynaptic potentials (mEPSC). On the contrary, AV-Tau-S262A infection resulted in a decrease in the formation of dendritic spines. Tau-WT was infected with DAPK1-KD-/-primitive primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial primordial pri
5. knocking out DAPK1 kinase domain to alleviate ischemic injury
The body weight, cerebral blood vessels, blood flow, brain structure and emotions of DAPK1-KD-/- mice did not change significantly compared with wild-type mice in the same nest, suggesting that conditioned knockout of DAPK1 kinase domain did not affect the phenotype of mice; MCAO1-hour ischemia, reperfusion 24 hours, magnetic resonance imaging and TTC staining showed that the ischemic area of DAPK1-KD mice was larger than that of DAPK1-K mice. In Dloxp/loxp mice, the levels of Tau pS262 and degeneration and apoptosis of DAPK1-KD-/- mice were observed by FJ staining and TUNEL at 3 and 7 days after reperfusion. The loss of dendritic spines was also alleviated, and the neurological function score and motor coordination were improved.
Therapeutic effect of 6.TAT-R1D on stroke injury
A peptide TAT-R1D was synthesized according to the site of interaction between DAPK1 and Tau. Fluorescence microscopy showed that TAT-R1D was absorbed by neurons instead of microglia or astrocytes. Immunocoprecipitation results showed that TAT-R1D could be used in brain tissue at the dose of intravenous TAT-R1D2mg/kg within 6 hours of reperfusion. Tau pS262 decreased, synapse-related proteins PSD-95, GluR1 and Synapsin-1 were up-regulated compared with the control group, TTC staining was performed 3 days later, and the ischemic area was reduced; moreover, TAT-R1D significantly increased the neural function of the mice 7 days after TMCAO. Able to score and behave in behavior such as water maze and open field.
[Conclusion]
We found for the first time that the interaction between DAPK1 and Tau in ischemic stroke mice mediated the loss of dendritic spines and subsequent neuronal death after stroke. The activation of DAPK1 phosphorylated Tau at the site of Ser262 triggered Tau aggregation in the dendritic spines. Blocking the interaction between DAPK1 and Tau protects dendritic spines from loss and reverses neurological impairment. Furthermore, we preliminarily investigated that the interaction between DAPK1 and Caytaxin in ischemic stroke may mediate poststroke presynaptic dysfunction. Row intervention is likely to provide new therapeutic targets and strategies for the treatment of ischemic stroke.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R743.3
【相似文献】
相关期刊论文 前10条
1 王文敏,王荪;缺血性卒中后痴呆的发生率及临床决定因素[J];国外医学脑血管疾病分册;2001年02期
2 韦英秀;缺血性卒中后3个月抗栓和抗高血压治疗[J];国外医学脑血管疾病分册;2001年05期
3 刘鸣;研究硕果累累 临床有证可循——缺血性卒中的预防大有可为[J];国外医学脑血管疾病分册;2002年05期
4 张仁良,刘新峰;2002年缺血性卒中研究和治疗进展[J];国外医学(脑血管疾病分册);2003年03期
5 袁恩庆,王馥;如何预防缺血性卒中[J];神经疾病与精神卫生;2003年05期
6 曲东锋;消极情绪可触发缺血性卒中[J];国外医学(脑血管疾病分册);2004年12期
7 文诗广;缺血性卒中的早期诊断[J];中国社区医师;2005年15期
8 国红;缺血性卒中并发症的防治[J];中国社区医师;2005年15期
9 国红;缺血性卒中的预防[J];中国社区医师;2005年15期
10 宿英英;;如何评估缺血性卒中抗凝治疗的效果[J];中国脑血管病杂志;2005年12期
相关会议论文 前10条
1 林森;吴波;孔繁一;郝子龙;陶文丹;王德任;刘鸣;;缺血性卒中伴房颤患者临床特征、治疗及预后的研究[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
2 张莹;周成业;刘朋;王云凤;;缺血性卒中偏瘫患者远期抑郁症状影响因素的Logistic回归分析[A];2009年浙江省神经病学学术年会论文汇编[C];2009年
3 李久伟;邹丽萍;;儿童动脉缺血性卒中10年后追踪研究[A];中华医学会第十五次全国儿科学术大会论文汇编(上册)[C];2010年
4 王为珍;祝茗;郑茜;赵永波;;弥散加权和灌注加权在缺血性卒中中的应用[A];中华医学会第七次全国神经病学学术会议论文汇编[C];2004年
5 朱见文;何俊瑛;高玉林;李震中;;巨细胞病毒活动性感染与进展型缺血性卒中相关性研究[A];第九次全国神经病学学术大会论文汇编[C];2006年
6 许予明;;缺血性卒中的抗血小板聚集治疗[A];河南省卫生部脑卒中及高危人群内科诊治技术培训班暨国际级继续教育培训班《脑卒中诊断与防治新进展》资料汇编[C];2012年
7 王翠兰;苗萌;;缺血性卒中出血转化的影响因素[A];山东省2013年神经内科学学术会议暨中国神经免疫大会2013论文汇编[C];2013年
8 刘朋;周成业;张莹;王云凤;;缺血性卒中患者生活活动能力影响因素分析[A];2009年浙江省神经病学学术年会论文汇编[C];2009年
9 江静雯;刘建荣;;胰岛素样生长因子及其结合蛋白与缺血性卒中[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
10 周盛年;;解读《他汀类药物防治缺血性卒中/短暂性脑缺血发作专家共识》他汀类药物防治缺血性卒中/短暂性脑缺血发作专家共识组[A];山东省2013年神经内科学学术会议暨中国神经免疫大会2013论文汇编[C];2013年
相关重要报纸文章 前10条
1 记者 匡远深 通讯员 赵晶晶;左心房异常可引发缺血性卒中[N];健康报;2013年
2 记者 王丹;缺血性卒中治疗定下“双20”目标[N];健康报;2012年
3 陈小芦;走近针灸治疗缺血性卒中的“时间窗”[N];中国中医药报;2004年
4 本报记者 马爱平;中匈合作研究缺血性卒中药物[N];科技日报;2010年
5 记者 靖九江;颅动脉狭窄是缺血性卒中的重要病因[N];中国医药报;2012年
6 刘飞;《缺血性卒中侧支循环评估与干预中国专家共识》发布[N];科技日报;2013年
7 新疆维吾尔自治区巴州人民医院神经内科 关玉华 艾克拜尔;步长脑心通胶囊在缺血性卒中二级预防中的研究[N];医药经济报;2011年
8 董强;缺血性卒中急性期 抗栓研究方兴未艾[N];健康报;2006年
9 北京天坛医院教授 王拥军邋博士 郑华光;哪些药物能防治卒中[N];健康报;2007年
10 本报记者 裘炯华;我国卒中管理现状:他汀类应用不理想[N];医药经济报;2013年
相关博士学位论文 前10条
1 林绍鹏;血清尿酸和GLUT-9基因启动子区单核苷酸多态性位点与非心源性缺血性卒中的相关性研究[D];南方医科大学;2014年
2 旺姗;缺血性卒中后DAPK1死亡信号介导突触损伤的机制研究[D];华中科技大学;2015年
3 谈颂;缺血性卒中出血转化影响及预测因素的研究[D];四川大学;2005年
4 张宁;预测缺血性卒中短期和长期死亡率的危险评分在中国病人中的外部验证[D];河北医科大学;2013年
5 潘旭东;青年缺血性卒中患者纤维蛋白原β-148C/T基因多态性和血浆纤维蛋白原水平研究[D];天津医科大学;2004年
6 马英;缺血性卒中住院时间预测因子暨与CD40-1C/T遗传多态性的研究[D];重庆医科大学;2012年
7 詹奕红;CELSR1基因多态性与中国汉人缺血性卒中的关联性研究[D];福建医科大学;2013年
8 李姝雅;伴房颤的缺血性脑血管病患者的临床特点及预后的研究[D];首都医科大学;2013年
9 王永久;白藜芦醇对复发缺血性卒中大鼠的神经保护作用研究[D];天津医科大学;2012年
10 牛丰南;FasL在缺血性卒中后的炎症作用及其病理机制探讨[D];南京医科大学;2012年
相关硕士学位论文 前10条
1 魏文;脑心通胶囊对CYP2C19*2、*3型缺血性卒中气虚血瘀证患者卒中复发的预防作用研究[D];福建中医药大学;2015年
2 王文娟;缺血性卒中患者低高密度脂蛋白胆固醇血症的相关危险因素分析[D];河北医科大学;2015年
3 吕琦;颈动脉超声评估颈动脉粥样硬化斑块易损性的临床研究[D];苏州大学;2015年
4 杨有仙;后循环首次缺血性卒中严重程度的相关因素分析[D];昆明医科大学;2015年
5 周全;缺血性卒中患者脑动脉狭窄分布及短期预后分析[D];华北理工大学;2015年
6 高涛;血压对缺血性卒中脑血流动力学、神经功能缺损的影响[D];河南科技大学;2015年
7 吕慧慧;CYP2C19基因多态性在缺血性卒中患者中的观察性研究[D];第二军医大学;2015年
8 杨恋;转录因子EGR1对缺血性卒中预后的影响及其机制研究[D];南方医科大学;2015年
9 臧雪风;HDAC在缺血性卒中大脑皮层的表达及其选择性抑制对神经元的保护作用研究[D];南京大学;2013年
10 张文静;缺血性卒中/TIA患者合并房颤的筛查及危险因素分析[D];南方医科大学;2015年
,本文编号:2184705
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2184705.html