HTRA1基因突变对血管平滑肌细胞功能的影响及其与氧化还原反应关系研究
[Abstract]:CARASIL is a monogenic disease that directly affects the small blood vessels of the brain. It is caused by a mutation in the Htr A serine peptidase/protease 1 (HTRA1) gene. CARASIL occurs in early adulthood, mostly in men, and its exact incidence is not yet known. The main clinical manifestations are ischemic stroke or progressive deterioration of brain function, dementia, early alopecia and premature alopecia. Severe low back pain, deformable spondylopathy, and intervertebral disc herniation. Imaging features include diffuse white matter changes in the basal ganglia and thalamus, and multiple lacunar infarctions. Histopathologically, CARASIL is characterized by arteriosclerosis of small perforating arteries with intimal thickening. Vascular smooth muscle cell loss and clear degeneration of the mesangium. HTRA1 gene is located in the 10q26 region and contains nine exons. CARASIL-related allele variants appear on exons 1, 3, 4 and 6. There are 11 mutations, including 7 missense mutations, 1 shift mutation, 2 nonsense mutations and 1 deletion mutation mutation. HTRA1 is a secretory serine. Acid protease, which can promote the degeneration of extracellular matrix protein, also plays an important physiological role. It is related to arthritis, cancer, familial ischemic cerebellar vascular disease, age-related macular degeneration and Alzheimer's disease. Loss of function of HTRA1 protease leads to CARASIL, but the exact mechanism is not yet clear. A new missense mutation of HTRA1 gene on exon 6, 1091TC (point mutation), was found in the first CARASIL family in China. Previous studies have shown that the mutation of HTRA1 gene can reduce the expression of HTRA1m RNA and its protein, and induce the up-regulation of TGF-beta 1/Smads/CTGF signaling pathway. In this study, we used HTRA mutant and wild-type lentiviral expression vectors to infect human cerebral vascular smooth muscle cells, and observed the function and redox reaction of the cells, so as to explore the pathogenesis of CARASIL. Methods: The primers of HTRA1 gene were designed and constructed using NCBI Genbank database. Wild and mutant HTRA1 genes were harvested and amplified by PCR and the lentiviral vector GV287 was digested. The HTRA1 gene was recombined into GV287 and transformed into pre-cultured competent cells. The recombinant HTRA1 was preliminarily identified by PCR, and the positive cells identified by PCR were sequenced and compared with the HTRA1 sequence in Genbank database to verify the success of the construction of lentiviral vector. Results: The target fragments of HTRA1 gene and HTRA1-Mut gene were amplified by designed primers PCR. After digestion with GV287, the transfected cells were transformed successfully. The positive clones identified by PCR were sequenced and compared with Genbank number. The sequence of HTRA1 gene and HTRA1-Mut gene in the database was identical. After transfection of 293T with HTRA1/HTRA1-Mut expression vector, obvious fluorescence was observed and the viral titer was determined as 2E+8TU/ml. Conclusion: Eukaryotic expression vectors of HTRA1 gene and HTRA1-Mut gene were successfully constructed, and HTRA1 and HTRA1-Mut lentiviruses were successfully packaged and titered. Objective: To establish a model of human cerebral vascular smooth muscle cells (HBVSMC) infected with HTRA1 and HTRA1-Mut lentiviral vectors. Methods: HBVSMC cells were cultured and phenotyped by alpha-SMA antibody fluorescence staining. HBVSMC was infected by lentiviral vector with over-expression of HTRA1 and HTRA1-Mut. Results: HBVSMC grew well, the morphology of cells was normal under light microscope, and the cells stained with anti-alpha-SMA antibody showed good fluorescence staining; HBVSMC with over-expression of HTRA1 and HTRA1-Mut expressed fluorescence, and the fluorescence rate was over 80%. BVSMC cell lines were identified successfully and the model of VSMC infected with HTRA1 and HTRA1-Mut lentiviral vector was established successfully. Part III The effect of HTRA1 gene mutation on proliferation, migration and apoptosis of human VSMC Objective: To detect the effect of HTRA1 and HTRA1-Mut lentiviral vector on HBVSMC transfection. Methods: HBVSMC was divided into three groups: normal NC human cerebral vascular smooth muscle cell group, OE-WT HTRA1 wild type virus infection cell group and OE-MU HTRA1 mutant virus infection cell group. Results: Compared with normal human cerebrovascular smooth muscle cells (NC), the proliferation of HTRA1 wild-type virus-infected cells (OE-WT) was not significantly changed, and the proliferation of HTRA1 wild-type virus-infected cells (OE-MU) was slowed down. Compared with normal human cerebrovascular smooth muscle cells (NC), the Transwell metastasis of HTRA1 wild-type virus-infected cells (OE-WT) was observed. There was no significant difference (P 0.05), but the Transwell metastasis rate of HTRA1 mutant virus-infected cells (OE-MU) was decreased (P 0.05). Compared with OE-MU group, the metastasis rate of human cerebral vascular smooth muscle cells in OE-WT group was significantly decreased (P 0.05). Compared with NC group, the apoptosis of HTRA1 wild type virus-infected cells (OE-WT) was decreased (P 0.05), but the apoptosis rate of HTRA1 protrusion was decreased (P 0.05). There was no significant decrease in the number of apoptosis in OE-MU cells (P 0.05). Compared with OE-WT cells infected by HTRA1, the number of apoptosis in OE-MU cells infected by HTRA1 was increased (P 0.05). Conclusion: The proliferation and migration activity of OE-MU cells infected by HTRA1 mutation gene were decreased, and the migration activity was also decreased. Objective: To detect the changes of oxidative stress in HBVSMC transfected with HTRA1 and HTRA1-Mut lentiviral vectors. Methods: NC and OE were collected at specific time points after HTRA1 and HTRA1-Mut lentiviral vectors were transfected into HBVSMC. The expression of NOXm RNA and protein in three groups of cells was detected by Real-time PCR and Western Blot respectively, and the levels of reactive oxygen species (ROS) in three groups of cells were detected by DCFH-DA method. The expression level of NOX protein in normal human cerebral vascular smooth muscle cells was lower than that in normal human cerebral vascular smooth muscle cells, but the expression level of NOX 4 protein was higher after infection with lentivirus LV-HRTA1 and LV-HRTA1-MUT. The expression of ROS in normal human cerebral vascular smooth muscle cells was lower than that in lentivirus LV-HRTA1-MUT cells. CONCLUSION: 1. The production of reactive oxygen species (ROS) and the expression of NOX4m RNA in human cerebral vascular smooth muscle cells infected with HTRA1 mutant gene increased, but NOX4 was not significantly different from that of HTRA1 wild type gene. Compared with the other two groups, the expression of protein was increased. 2. The proliferation, migration and apoptosis of human cerebral vascular smooth muscle cells infected with HTRA1 mutant gene decreased, which may be related to oxidative stress in cells.
【学位授予单位】:第二军医大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R743
【相似文献】
相关期刊论文 前10条
1 钱结胜,王深明,刘大钺,林颖,黄雪玲;静止压力诱导血管平滑肌细胞的增殖与凋亡[J];中华医学杂志;2005年29期
2 陆峥飞;;胰岛素减轻血管平滑肌细胞钙化但增加血管平滑肌细胞的磷转运[J];生理科学进展;2007年04期
3 信栓力;吴宗贵;;壳糖体外介导血管平滑肌细胞内皮型一氧化氮合酶基因转移的初步研究[J];上海医学;2007年10期
4 盛晓峗;王树人;;血管平滑肌细胞移行及表型转换的分子机制[J];中国动脉硬化杂志;2008年11期
5 梁明达;邱殷庆;;人血管平滑肌细胞系的建立及其特性[J];云南医药;1988年03期
6 高钰琪,孙秉庸;血管平滑肌细胞的钙动力学[J];生理科学进展;1990年04期
7 张茜;血管紧张素Ⅱ受体与血管平滑肌细胞的增生、肥大[J];高血压杂志;1997年01期
8 谢良地,吴可贵,陈达光,,A.D.Hughes,Z.Clunn,J.Lymn;血小板源生长因子诱导血管平滑肌细胞迁移及机构[J];中国动脉硬化杂志;1998年01期
9 卢次勇,凌文华,马静,吴聪娥;氧化型低密度脂蛋白对血管平滑肌细胞应激活化蛋白激酶活性及凋亡的影响[J];华南预防医学;2002年04期
10 季宁东;血管平滑肌细胞的增殖机制[J];中国基层医药;2002年03期
相关会议论文 前10条
1 童中艺;王佐;傅仕福;危当恒;姚峰;吕运成;喻丹凤;王贵学;;氧化型低密度脂蛋白对大鼠血管平滑肌细胞基质细胞衍生因子1α表达的影响[A];第八次全国动脉硬化性疾病学术会议论文集[C];2005年
2 刘建平;唐波;何国祥;;直流电场影响血管平滑肌细胞迁移和增殖的实验研究[A];中华医学会心血管病学分会第八次全国心血管病学术会议汇编[C];2006年
3 王宁宁;王笑云;何东元;熊明霞;张飞飞;杨俊伟;;体外高磷诱导人血管平滑肌细胞钙化的作用研究[A];中华医学会肾脏病学分会2006年学术年会论文集[C];2006年
4 赵瑾;迟路湘;诸兴明;;兔颈动脉粥样硬化斑块形成过程中血管平滑肌细胞功能变化的动态观察[A];第十一届全国神经病学学术会议论文汇编[C];2008年
5 余惠珍;谢良地;朱鹏立;;人组织激肽释放酶基因转移对血管平滑肌细胞迁移的影响[A];中华医学会第11次心血管病学术会议论文摘要集[C];2009年
6 唐波;何国祥;刘建平;李德;;血管平滑肌细胞受电场作用后迁移的变化[A];中华医学会心血管病分会第八次全国心血管病学术会议汇编[C];2004年
7 刘建平;何国祥;唐波;景涛;;电场干预对血管平滑肌细胞表面血小板衍化生长因子受体分布的影响[A];中华医学会心血管病学分会第八次全国心血管病学术会议汇编[C];2006年
8 唐波;何国祥;刘建平;李德;;电场干预对血管平滑肌细胞形态和细胞骨架的影响[A];中华医学会心血管病分会第八次全国心血管病学术会议汇编[C];2004年
9 唐波;刘建平;何国祥;李德;;直流电场对大鼠血管平滑肌细胞骨架分布的作用[A];中华医学会心血管病学分会第八次全国心血管病学术会议汇编[C];2006年
10 唐波;刘建平;何国祥;李德;;直流电场对血管平滑肌细胞迁移的影响[A];中华医学会心血管病学分会第八次全国心血管病学术会议汇编[C];2006年
相关重要报纸文章 前2条
1 张诚;选择有挑战性的研究课题[N];科技日报;2005年
2 余宁宁;冠心病病因迷雾拨开[N];健康报;2004年
相关博士学位论文 前10条
1 宋海波;(一)ROS调节大鼠血管中膜干细胞向血管平滑肌细胞分化机制的研究 (二)Iriain通过ERK信号通路促进人脐静脉内皮细胞的增殖并部分抑制高糖诱导的凋亡[D];山东大学;2015年
2 陈齐山;microRNA-34a调控血管平滑肌细胞表型转化在血管损伤修复及重塑中的作用及机制[D];浙江大学;2015年
3 万雪娇;BK通道在张应变诱导血管平滑肌细胞分化中的作用及其机制[D];上海交通大学;2015年
4 丁雪燕;OCT4对血管平滑肌细胞增殖迁移及血管新生内膜增生的作用及机制[D];第二军医大学;2016年
5 武玉涛;microRNA-214通过靶向作用QKI调控干细胞向血管平滑肌细胞分化研究[D];浙江大学;2016年
6 李鹏云;SIRT1在重症失血性休克血管平滑肌细胞线粒体损伤中的作用[D];南方医科大学;2015年
7 石瑜;HTRA1基因突变对血管平滑肌细胞功能的影响及其与氧化还原反应关系研究[D];第二军医大学;2015年
8 武卫东;大鼠血管平滑肌细胞蛋白组学的研究以及尼古丁对血管平滑肌细胞蛋白和基因表达影响的研究[D];山西医科大学;2005年
9 马晶;β-肾上腺素能受体不同亚型对于血管平滑肌细胞迁移、凋亡及增殖的影响及其信号转导机制[D];中国人民解放军军医进修学院;2004年
10 朱清;肾素-血管紧张素系统及其阻断剂对血管平滑肌细胞在动脉粥样硬化中的作用机理的研究[D];山东大学;2003年
相关硕士学位论文 前10条
1 冯模强;OPG与冠状动脉粥样硬化相关性及其对人血管平滑肌细胞钙化的影响[D];川北医学院;2015年
2 张睦清;维生素K2对高磷诱导的大鼠血管平滑肌细胞钙化的影响和机制[D];河北医科大学;2015年
3 成龙;水蛭酶解提取物抑制脂多糖诱导的大鼠血管平滑肌细胞ICAM-1、VCAM-1及MCP-1的表达[D];山东大学;2015年
4 匡陈伟;大鼠血管平滑肌细胞表型转化前后NCX1表达变化的研究[D];昆明医科大学;2015年
5 李梅;RNA干扰对大鼠血管平滑肌细胞Ca_v1.2、Ca_v1.3基因表达的影响[D];山西大学;2015年
6 陈天雷;Klotho蛋白对血管平滑肌细胞钙化的影响及其机制研究[D];南京医科大学;2015年
7 张苗;失活氨基脲敏感性胺氧化酶对动脉粥样硬化发展的影响[D];苏州大学;2016年
8 侯梦琳;姜黄素抑制大鼠血管平滑肌细胞钙化的凋亡信号机制研究[D];中山大学;2016年
9 龚海燕;高糖对小鼠血管平滑肌细胞钙化的影响及机制[D];南华大学;2016年
10 欧林灵;miR-32-5p在小鼠血管平滑肌细胞中对PTEN表达调控的作用及机制研究[D];南华大学;2016年
本文编号:2241086
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2241086.html