Treg输注移植通过抑制神经炎症对SAH小鼠脑组织的保护作用研究
[Abstract]:Objective: The subarachnoid hemorrhage (SAH) is a common hemorrhagic lesion of the brain, because of its high death rate and the poor prognosis of the survivors, the quality of life of the patient is decreased. The severity of cerebral vasospasm (CVS) and early brain injury (EBI) in SAH patients was confirmed to be related to the poor prognosis. Therefore, it is necessary to develop new drugs, to control the early inflammatory immune response after SAH, to reduce the pathogenicity of EBI and CVS, and to reduce the pain of patients. It has been found that regulatory T cells (CD4 + CD25 + regulatory T cell, Treg) play an endogenous protective role in the inhibition of brain tissue damage in the brain of cerebral infarction. So, can regulatory T-cells play a regulatory role in the inflammatory immune response after SAH? In order to study the effect of Treg on the brain protection of SAH mice, we made the SAH model of the mouse by means of the line-bolt puncture method, and extracted and expanded the regulatory T-cells in vitro from the spleen and the lymph nodes of the mouse, and the regulatory T cells were amplified in vitro. The effect of Treg on the brain protection of the SAH mice was discussed by the evaluation of the neurological function and the analysis of the experimental data. In order to verify the conclusion of in vitro cell experiment, it is possible to replicate in animal model, and to further study the mechanism and function of Treg on the in vitro BV2 and in vivo brain tissue protection. We activate BV2-activated in vitro cell model by lipopolysaccharides. In order to study the pathological process of SAH ischemia and hypoxia in the mouse brain, the regulatory T cells were extracted from the spleen and lymph nodes of the mouse and the regulatory T cells were expanded in vitro, co-cultured with the BV2-activated BV2, and the mechanism of the protective effect of Treg on the in vitro BV2 was verified by co-culture of Treg and BV2. From the two angles of in vitro cell culture and in vivo experiment, we studied the mechanism of Treg's therapeutic effect from the whole level, the level of protein and the three levels of mRNA. Methods: The spleen of the mouse and the lymph node Treg were extracted by double-selection of the immunomagnetic beads. The SAH model of the mouse was made by the internal carotid artery bolt puncture method. The SAH model was randomly divided into the sham group, the SAH + PBS group, the SAH + SP (Splasmote, the spleen cell) group, the SAH + Treg group, the transfemoral vein infusion of CD4 + CD25 + Treg, the cerebral blood flow of the brain and the behavioral indexes of the animals in each group. The protective effect of Treg infusion on the brain tissue of SAH mice was verified by the study of the distribution of the morphology of the brain cells and the positive cells in different staining methods. Lipopolysaccharide induced in vitro BV2 activation, Treg was co-cultured with activated BV2, and the activity of the in vitro BV2 was detected by MTT method; the content of TNF-1, IL-6, NO, IL-10 in the inflammatory factors was detected by the nitric acid reductase method and the ELISA method; To verify the effect of Treg on the phagocytosis of BV2 induced by LPS. Immunofluorescence double staining and immunofluorescence three-staining method were used to mark the expression of M1 and M2 positive cells in different polarization states of the brain tissue of in vitro BV2 and in vivo SAH mice, and the in vitro BV2 and SAH mouse brain tissue M 1 were detected by real-time fluorescence quantitative PCR (RT-PCR). The expression of marker mRNA in M2 phase was detected by Western blot. The expression of TLR4/ p-NF-B, p-P38/ P-ERK1/2 was detected by Western blot. The mechanism of the protective effect of Treg on the brain tissue of BV2 and SAH mice was discussed through a comprehensive study of multi-angle and multi-angle. Results: After the infusion of Treg vein, the mortality of the mice after SAH decreased, the performance of various vital signs and the neurological function improved, the score of the neurological function was improved, the blood flow of the brain tissue was improved, the cerebral edema of the mice was relieved, and the degree of cerebral parenchymal micro-artery and basilar artery spasm was relieved. The degree of damage to the vascular endothelial cells was reduced, and the number of neuronal apoptosis in the brain of the mice was reduced and the degree of damage was reduced. Treg was co-cultured with LPS-activated in vitro BV2, the content of inflammatory stimulating factor was significantly reduced, and the content of IL-10 was increased. At the same time, BV2 swallowed more microspheres during the phagocytosis, and Treg had a significant protective effect on LPS-activated BV2. Immunofluorescence staining showed a decrease in the expression of the marker in the M1 phase of the brain tissue of the in vitro microglia and SAH mice, and the expression of the marker in the M2 phase was up-regulated. The results of RT-PCR showed that the expression of the mRNA level of the marker mRNA in the brain tissue of the in vitro and in vitro microglia and SAH mice was decreased, and the expression of the expression of the marker mRNA in the M2 phase was up-regulated. Western blot showed that the expression of the expression of TLR4, p-NF-B, p-P38, p-ERK1/ spoon in the brain tissue of BV2 and SAH mice in vitro was significantly reduced. Conclusion:1, Treg infusion can reduce the early death rate of SAH mice, improve the local cerebral blood flow of 48 h, effectively relieve the degree of destruction of the blood-brain barrier after SAH, maintain the integrity of the blood vessel in the parenchymal vessels, and reduce the degree of BA spasm, the degree of damage to the cortex of the mouse and the neuron of the hippocampus is obviously reduced, the degree of the over-apoptosis of the brain tissue cells is reduced, the level of the neural function of the mouse after the SAH is improved, the repair of the neuron is promoted, the quality of the life of the mouse after SAH is improved, and 2, Treg is co-cultured with the LPS-activated BV2, the content of the inflammatory stimulation factor of the cell culture solution is reduced, the content of the inhibitory factor is increased, the phagocytosis of the BV2 is enhanced, and 3, the Treg infusion therapy can inhibit the polarization of the microglia M1 by reducing the expression of the mRNA level of the M1 polarized state marker, and increase the expression of the mRNA level of the M2 polarized state marker, It is possible to reduce the expression of inflammatory stimulus by inhibiting the activation of the inflammatory signal pathway TLR4/ p-NF-SupB, p-P38/ p-ERK1/2. In this experiment, RT-PCR and immunofluorescence staining were used to study the effects of Treg on the different polarization states of microglia in vitro and in vivo. By combining the behavior of animal and the mechanism of cellular molecular level, the effect of regulatory T cell on the tissue was discussed in various aspects. And the protective effect is improved. The experimental results show that Treg has a significant protective effect on the brain tissue of BV2 and SAH mice in vitro. However, the results of animal model's level show that there is still a great distance from the actual application of the clinical human body. As a kind of biological active substance, the cell can't be as stable as the chemical medicine, and the problems in the preservation and transportation of the cell are the important bottleneck of clinical application. In addition, the transplantation of living cells of human body, there are still many problems, such as ethics and exclusion, to be further studied and solved.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R743.35
【相似文献】
相关期刊论文 前10条
1 ;特邀王平宇教授举办大鼠脑切片观片讲习班[J];神经解剖学杂志;1991年02期
2 ;大鼠脑切片读片讲习班8月5日在徐州举行[J];神经解剖学杂志;1992年01期
3 张晓蕊;曾超美;杜军保;梁蓉;杨丽君;郁卫东;郭静竹;;受体相互作用相关蛋白140在正常小鼠脑发育过程中的表达[J];中华医学杂志;2007年44期
4 马文煜,于碧云,姜绍谆,李学荣,魏正乾,汪美先;从感染鼠脑浓缩提纯流行性乙型脑炎病毒的研究[J];第四军医大学学报;1984年04期
5 刘吉生;;甲状腺激素对大鼠脑~3H亮氨酸摄取的影响[J];地方病通讯;1984年S1期
6 刘吉生,欧玉清,秦大凯,李建群;甲状腺激素对大鼠脑~3H 亮氨酸摄取的影响[J];中国地方病学杂志;1985年01期
7 周金煦;胥彬;;小白鼠脑Qg注射U畏鹊膿醋饔眉捌淠蛥逍訹J];生理学报;1959年01期
8 汤克俭;徐德隆;余慧贞;王增;丁训诚;;氚标记甲基-苯基-四氢吡啶在鼠脑内的结合部位——帕金森病发病机理的研究[J];上海医学;1990年10期
9 朱治远,张凤真,祁建,周聪泮;大白鼠脑冰冻连续切片、细胞纤维间隔分片染色法[J];徐州医学院学报;1980年02期
10 王桂兰,,刘双军,侯玉春,全江涛,李敬田;铅对大鼠脑细胞膜脂质过氧化及超氧化物歧化酶活性的影响[J];卫生毒理学杂志;1995年03期
相关会议论文 前10条
1 王素青;石年;;拟除虫菊酯对大鼠脑组织中白介素-1β的影响[A];中国毒理学会第三届全国学术会议论文(摘要)集[C];2001年
2 张斌;刘毅;蔡黔;张鲜英;张诚;张绪生;;不同海拔高度严重烧伤延迟复苏大鼠脑组织中能量负荷的变化及其意义[A];第五届全国烧伤救治专题研讨会烧伤后脏器损害的临床救治论文汇编[C];2007年
3 彭国平;葛求富;魏尔清;;药物对小鼠脑片缺氧缺糖/再灌损伤的作用[A];第十一届全国神经药理学术会议论文摘要集[C];2004年
4 田京伟;;不同场强的电磁脉冲辐照对大鼠脑线粒体功能的影响[A];2007年全国药物毒理学会议论文集[C];2007年
5 张斌;刘毅;蔡黔;张鲜英;张诚;张绪生;肖斌;姜疆;;不同海拔高度严重烧伤延迟复苏大鼠脑组织中谷氨酸的变化及其意义[A];第六届全国烧伤救治专题研讨会论文汇编[C];2009年
6 马岩;宁穗;卢宁;李莉;朱大年;沈霖霖;;P2X受体亚型在大鼠脑内的表达[A];中国生理学会第五届全国心血管、呼吸和肾脏生理学学术会议论文摘要汇编[C];2005年
7 张斌;刘毅;蔡黔;张鲜英;张诚;张绪生;肖斌;姜疆;;不同海拔高度严重烧伤延迟复苏大鼠脑组织中谷氨酸的变化及其意义[A];第五届全国烧伤救治专题研讨会烧伤后脏器损害的临床救治论文汇编[C];2007年
8 刚宏林;何志一;刘相辉;;玻璃苣醇提物对慢性抑郁模型小鼠脑组织中神经递质的影响[A];2011年中国药学大会暨第11届中国药师周论文集[C];2011年
9 曹启富;;大蒜素对急性局灶性脑缺血大鼠脑血氧代谢的影响[A];第五次全国中西医结合血瘀证及活血化瘀研究学术大会论文汇编[C];2001年
10 张丽;叶翠飞;沈芊;李林;;高效液相荧光法测定大鼠脑内氨基酸类神经递质方法的改良[A];2011全国老年痴呆与衰老相关疾病学术会议第三届山东省神经内科医师(学术)论坛论文汇编[C];2011年
相关重要报纸文章 前7条
1 ;鼠脑控制生物化机器人问世[N];今日信息报;2003年
2 记者 陈勇;美国科学家成功让鼠脑中长出人脑细胞[N];新华每日电讯;2005年
3 美信;老鼠脑内长人脑细胞[N];医药经济报;2002年
4 基因潮;基因工程使鼠脑像人脑[N];医药经济报;2002年
5 记者 田学科;以科学家首次观测到鼠脑神经细胞发育过程[N];科技日报;2007年
6 记者 郑晓春;以用干细胞成功治愈实验鼠脑疾[N];科技日报;2008年
7 记者 李宓;鼠须像琴弦船振动扫描和感知物体[N];新华每日电讯;2004年
相关博士学位论文 前9条
1 王瑗;Treg输注移植通过抑制神经炎症对SAH小鼠脑组织的保护作用研究[D];山东大学;2016年
2 李波;内质网分子伴侣与小鼠脑发育的关系[D];中国医科大学;2003年
3 庄旭明;鼠脑内几种生物小分子的活体在线检测分析[D];山东大学;2013年
4 吕铁钢;肠道病毒71型感染致小鼠脑线粒体损伤及可能机制研究[D];青岛大学;2013年
5 裴卉;四逆汤对内毒素休克大鼠脑损伤保护的分子机制研究[D];北京中医药大学;2009年
6 孙金梅;经鼻腔移植缺氧预处理的骨髓间充质干细胞对于小鼠脑出血作用的研究[D];首都医科大学;2015年
7 顾振;甲状旁腺素相关肽核定位序列与C-末端缺失导致小鼠脑发育异常[D];南京医科大学;2008年
8 张晓明;电针促进局灶性脑缺血大鼠脑内血管新生并减轻神经元损伤的研究[D];湖北中医药大学;2012年
9 张军;银杏平颤方对PD鼠脑氧应激作用的机制研究[D];北京中医药大学;2004年
相关硕士学位论文 前10条
1 赵雯;中药肝豆汤对Wilson病模型TX小鼠脑神经元保护效应中药筛选及疗效机制研究[D];安徽中医药大学;2015年
2 李越;SHARPIN在HSV-1感染性面瘫小鼠脑干中的动态表达及糖皮质激素对其的抑制作用[D];山东大学;2015年
3 刘博;阿托伐他汀对EAE小鼠的Nrf2/ARE信号通路的影响及凋亡机制研究[D];郑州大学;2014年
4 周红利;Oncomodulin在小鼠脑发育过程中的表达及其性别差异的研究[D];第三军医大学;2015年
5 蒋喜巧;蒲公英总黄酮对脑缺血模型的干预作用研究[D];河南中医学院;2015年
6 于丽;Cx36及Pannexin-1在NADPH氧化酶抑制剂apocynin抗大鼠脑缺血再灌注损伤作用中的机制[D];蚌埠医学院;2015年
7 常楠;柠檬草精油对苯并[a]芘致小鼠脑组织损伤保护机制的研究[D];大连医科大学;2015年
8 关梓桐;急性心肌梗死后抑郁大鼠脑细胞凋亡机制研究[D];北京中医药大学;2016年
9 步青云;电针早期干预对APP/PS1小鼠脑间质液Aβ水平的影响研究[D];北京中医药大学;2016年
10 吴月兵;不同频率电针对荷瘤小鼠脑β-内啡肽含量的影响[D];昆明医学院;2005年
本文编号:2481583
本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2481583.html