当前位置:主页 > 医学论文 > 神经病学论文 >

体外神经元网络4-AP痫性模型建立及能量代谢特征研究

发布时间:2019-05-27 20:19
【摘要】:第一部分体外培养海马神经元网络痫性电活动模型的建立 目的在体外培养原代大鼠胚胎海马神经元网络中,应用4-AP(50μM)分别进行致痫,通过与经典的低镁海马神经元痫样放电(SLEs)模型进行比较,建立4-AP的致痫神经网络模型。观察两种模型上神经元痫样放电的情况,为进一步探讨癫痫的能量代谢特征提供神经网络模型。 方法取孕第18-19天的胚胎SD大鼠,分离海马神经元培养,在倒置相差显微镜下观察神经元的生长情况。采用Map2免疫荧光细胞染色鉴定神经元。培养至第8天采用全细胞膜片钳技术记录神经元在无镁培养液、4-AP处理不同后30main内的放电情况。 结果神经元在种植24h后大部分贴壁,突起逐渐增多,在神经元间逐渐互相连接形成网络。培养第8~10d时细胞最为丰满。第8天的神经元经无镁培养液或4-AP处理后马上进行膜片钳检测,发现两组培养细胞均出现高频与高幅度痫样放电。在5-10min时间段达到高峰后逐渐下降,在每个时间段的放电频率及平均振幅均远远高于正常对照组(p0.001)。而低镁及4-AP两种致痫模型的比较,平均振幅及放电频率在30min内差异无统计学意义。三组间的平均振幅及放电频率在各时间变化均有显著性差异。 结论体外培养的胚胎海马神经元经4-AP处理后,可诱发出与低镁处理一样的高频与高幅度痫样放电,可视为一种体外痫性神经网络模型,作为体外研究痫性网络的工具。 第二部分体外培养胚胎海马神经元网络的能量代谢特征及与痫性标志变化间的关系 目的在体外培养的大鼠胚胎海马神经元细胞上,建立低镁及4-AP诱发痫性神经网络模型,检测30min内线粒体膜电位的变化,及细胞能量代谢标志分子ATP, ADP浓度,及网络致痫标志分子细胞外谷氨酸(Glu)及γ氨基丁酸(GABA)的含量。观察致痫神经网络线粒体膜电位水平、与能量代谢及网络致痫状态的关系。 方法分别用低镁培养液及4-AP对培养的海马神经元处理Omin,5min,1Omin,15min,20min,25min,30min后,利用荧光分光光度法检测胚胎海马神经元网络线粒体膜电位,用比色法检测海马神经元内ATP、 ADP含量,用ELISA法检测海马神经网络中Glu及GABA浓度。 结果大鼠胚胎海马神经元网络诱导SLEs后呈,线粒体膜电位、ADP及谷氨酸短期内升高,之后逐渐降低;而ATP及GABA则呈现相反变化。表明神经元网络诱导SLEs的事件可视为神经元网络的高电位爆发过程,并伴有高代谢特征。但相对而言,痫性标志分子的变化较电位变化迟滞。 结论大鼠胚胎海马神经元网络诱导SLEs后呈现规律性时相变化。在此过程中,细胞线粒体膜电位与痫性活动标志分子Glu呈现先升后降,而ATP与GABA呈现先降后升的变化趋势。这表明神经元网络诱导SLEs的事件可视为神经元网络高电位爆发过程,并伴有高代谢特征。但相对而言,痫性标志分子的变化较电位变化迟滞。图21幅,表16个,参考文献42篇
[Abstract]:The first part is the establishment of epileptic electrical activity model of hippocampal neuron network cultured in vitro. Objective to induce eclampsia by 4-AP (50 渭 M) in primary rat embryonic hippocampal neuron network in vitro. Compared with the classical epileptic discharge (SLEs) model of low magnesium hippocampal neurons, the epileptic neural network model of 4-AP was established. To observe the epileptic discharge of neurons in the two models, and to provide a neural network model for further study of the characteristics of energy metabolism in seizures. Methods the hippocampal neurons were isolated from embryonic SD rats on the 18th and 19th day of gestation, and the growth of neurons was observed under inverted phase contrast microscope. The neurons were identified by Map2 immunofluorescence cell staining. On the 8th day, the discharge of neurons in magnesium-free medium and 30main treated with 4-AP was recorded by whole-cell patch clamp technique. Results after 24 hours of implantation, most of the neurons adhered to the wall, the processes increased gradually, and the neurons gradually connected to each other to form a network. The cells were the most plump on the 8th to 10th day of culture. On the 8th day, the neurons were treated with magnesium-free medium or 4-AP as soon as they were treated with patch clamp. It was found that the cells in both groups showed high frequency and high amplitude epileptic discharge. After reaching the peak in 5-10min time period, the discharge frequency and average amplitude were much higher than those in the normal control group (p0. 001), and the discharge frequency and average amplitude in each time group were much higher than those in the normal control group (p0. 001). However, there was no significant difference in average amplitude and discharge frequency between low magnesium and 4-AP epileptic models in 30min. There were significant differences in average amplitude and discharge frequency among the three groups at each time. Conclusion the embryonic hippocampal neurons cultured in vitro can induce the same high frequency and high amplitude epileptic discharge as low magnesium treatment after 4-AP treatment, which can be regarded as a epileptic neural network model in vitro and used as a tool to study epileptic network in vitro. The second part is the energy metabolism characteristics of embryonic hippocampal neuron network cultured in vitro and its relationship with the changes of epileptic markers. Objective to investigate the relationship between energy metabolism and epileptic markers in rat embryonic hippocampal neuron cells cultured in vitro. The neural network model of epileptic induced by low magnesium and 4-AP was established. The changes of mitochondrial membrane potential and the concentration of ATP, ADP, a marker of cell energy metabolism, were detected in 30min. And the contents of extracellular glutamic acid (Glu) and gamma aminobutyric acid (GABA) in eclampsia induced by the network. To observe the relationship between the level of mitochondrial membrane potential and energy metabolism and the state of eclampsia induced by epileptic neural network. Methods the cultured hippocampal neurons were treated with Omin,5min,1Omin,15min,20min,25min,30min in low magnesium medium and 4-AP, respectively. the mitochondrial membrane potential of embryonic hippocampal neuron network was measured by fluorescence spectrophotometry. The content of ATP, ADP in hippocampal neurons was measured by colorimetric method, and the concentrations of Glu and GABA in hippocampal neural network were detected by ELISA method. Results after SLEs induced by rat embryonic hippocampal neuron network, the mitochondrial membrane potential, ADP and glutamic acid increased in a short period of time, and then decreased gradually, while ATP and GABA showed opposite changes. It is suggested that the event of SLEs induced by neural network can be regarded as the process of high potential burst of neural network, accompanied by high metabolic characteristics. But relatively speaking, the change of epileptic marker molecules is slower than the change of potential. Conclusion SLEs induced by embryonic hippocampal neuron network in rats shows regular temporal changes. In this process, the mitochondrial membrane potential and epileptic activity marker Glu increased at first and then decreased, while ATP and GABA decreased at first and then increased. This suggests that the event of SLEs induced by neural network can be regarded as a process of high potential burst of neural network, accompanied by high metabolic characteristics. But relatively speaking, the change of epileptic marker molecules is slower than the change of potential. Figure 21, table 16, references 42
【学位授予单位】:中南大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R742.1;R-332

【相似文献】

相关期刊论文 前10条

1 蔡申瓯;陶乐天;;神经元网络动力学的统计物理方法(英文)[J];生理学报;2011年05期

2 陈武凡;神经元网络的信息处理方式与应用[J];第一军医大学学报;1992年01期

3 顾凡及,张濵,,章惠明;一种修正的动态神经元网络模型的类脑电活动及其应用[J];生物物理学报;1995年04期

4 余生晨;高立;薛阳;黄江兰;余桂贤;崔新伟;;基于遗传算法和神经元网络的心电信号T波检测[J];中国生物医学工程学报;2008年04期

5 陈琳;潘海鸿;黄江;;基于互相关函数的培养神经元网络动态特征分析[J];生物医学工程研究;2008年03期

6 张军;朱虹;许朝晖;梁刚;季瑞瑞;;神经元网络容错学习在肾小球区域边界增强中的应用[J];生物医学工程学杂志;2006年03期

7 陈文娟;李向宁;冯显;蒲江波;骆清铭;;体外培养神经元网络功能结构的长时间发育变化[J];科学通报;2010年25期

8 朱耿;蒲江波;孙晶;李向宁;;培养海马神经元网络对刺激位置的群体编码[J];现代生物医学进展;2009年22期

9 杨彩琴;吴国栋;郝敦元;;一维Theta-神经元网络中规则单放电行波解的进一步讨论[J];内蒙古大学学报(自然科学版);2010年02期

10 李安安;龚辉;;光学显微水平全脑成像方法的研究进展[J];生物化学与生物物理进展;2012年06期

相关会议论文 前10条

1 王青云;;时滞对神经元网络时空同步的作用[A];第三届全国动力学与控制青年学者研讨会论文摘要集[C];2009年

2 王青云;;神经元网络系统的非线性时空动力学[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年

3 孙晓娟;;噪声激励下多层次神经元网络放电的动力学行为特性研究[A];第七届全国动力学与控制青年学者研讨会论文摘要集[C];2013年

4 郑艳红;陆启韶;;噪声影响下的格子耦合神经元网络的斑图和同步[A];第八届全国动力学与控制学术会议论文集[C];2008年

5 张蕊;向永光;;神经元网络在唐钢热轧1700生产线参数优化中的应用[A];全国冶金自动化信息网2010年年会论文集[C];2010年

6 王青云;;时滞对神经元网络时空同步的作用[A];中国力学学会学术大会'2009论文摘要集[C];2009年

7 李玉叶;张慧敏;魏春玲;杨明浩;王青云;古华光;任维;;随机信号在神经元网络中诱发的多次空间相干共振[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年

8 沈瑜;侯中怀;;从簇放电振幅推测耦合神经元网络的度分布性质[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年

9 李丽明;王众嫭;王延章;;一种类神经元网络模型及其学习算法初探[A];全国青年管理科学与系统科学论文集(第1卷)[C];1991年

10 陈剑飞;王一玲;林伟;;用神经元网络模型求解多目标决策问题[A];全国青年管理科学与系统科学论文集(第2卷)[C];1993年

相关重要报纸文章 前4条

1 ;GF Srl开发出用于包装过程检测的系统[N];中国包装报;2005年

2 老鬼阿定;“深度学习”技术进展令人振奋[N];计算机世界;2014年

3 王潇潇 杨义勇;我国研发高分辨“脑地图”可视仪[N];光明日报;2013年

4 编译 王喜文;人工智能与大数据怎样结合?[N];中国电子报;2014年

相关博士学位论文 前10条

1 李玉叶;三类神经元网络的时空动力学行为研究[D];陕西师范大学;2012年

2 贾晨辉;基于辨识与控制的神经元网络模型特性研究[D];天津大学;2012年

3 李向宁;基于多微电极阵列的培养神经元网络特性初探[D];华中科技大学;2007年

4 李艳玲;培养神经元网络的学习模型构建及机理研究[D];华中科技大学;2007年

5 卢梅丽;基于相响应的神经元网络同步的优化控制[D];天津大学;2013年

6 于海涛;神经元网络的同步、共振及控制研究[D];天津大学;2012年

7 陈传平;基于多电极阵列的培养神经元网络动态特征分析[D];华中科技大学;2007年

8 郭大庆;复杂神经系统中信息传输及信息处理的若干问题研究[D];电子科技大学;2011年

9 陈琳;培养神经元网络自发电信号的特性分析[D];华中科技大学;2008年

10 曾贤强;基于神经元网络的SFC注入束运线自动调束控制系统研究[D];兰州大学;2012年

相关硕士学位论文 前10条

1 时t@;数字神经元网络的实现与分析研究[D];天津大学;2009年

2 郑群现;具有不可靠突触的神经元网络的同步研究[D];电子科技大学;2011年

3 王梦松;RBF神经元网络的研究及其在复杂化学信息处理中的应用[D];浙江大学;2002年

4 宁维莲;耦合神经元网络的随机动力学行为研究[D];广西师范大学;2012年

5 贾晨辉;神经元网络同步的分析与控制[D];天津大学;2010年

6 蔡文秀;模糊神经元网络在过程控制中的应用[D];北京化工大学;2006年

7 徐波;时间周期耦合时滞神经元网络动力学行为的研究[D];鲁东大学;2014年

8 谢桐瑜;基于过程神经元网络的时序预测模型研究[D];大庆石油学院;2008年

9 肖倩;泛函神经元网络递归和剪枝学习算法及其集成研究[D];广西大学;2013年

10 张维安;培养神经元网络信号处理软件设计与实现[D];华中科技大学;2007年



本文编号:2486450

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/shenjingyixue/2486450.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b16ff***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com