基于BP神经网络的心脏病预测研究与实现
发布时间:2018-04-28 22:05
本文选题:BP神经网络 + 疾病预测 ; 参考:《吉林大学》2012年硕士论文
【摘要】:随着技术的进步,计算机与其他领域的合作越来越密切,解决了很多其他领域以前无法解决的难题。与此同时,随着生活水平和受教育程度的提高,健康问题越来越受到人们关注,将计算机应用于医疗领域进行疾病预测是当前研究的热点之一,并且意义重大。疾病的的预测有着越来越重要的意义,正逐渐受到人们关注。目前,对疾病预测的研究存在下面两个问题。其一,在医疗方面,计算机等设备绝大多数还是被用于疾病的检测而不是预测,此时计算机的作用仅仅是图像处理,在显示器上成像,甚至最终的结果还是需要医生来人工进行判断。在疾病诊断上医疗设备、计算设备只是作为辅助工具发挥着检测数据等最为基本的作用,医生作为整个过程的核心不可或缺。其二,很多疾病发病前的征兆或者发病时的症状具有相似之处,由于专家所研究领域的不同,专家根据所掌握的知识以及个人的经验,再结合病人的其他症状,所得出来的诊断结果可能有所不同,这样会造成严重的后果。 针对以上提出的问题,本文将BP神经网络应用于心脏病预测,利用神经系统的并行性,对心脏病进行预测,降低预测的失效率,充分利用了这些疾病预测的相同数据部分,提高数据利用效率;预测结果具有节省时间,,并且可信度高的特征。是将计算机技术应用于医疗领域的有效尝试,计算机不在仅仅用于医疗上的检测,更多的应用于预测。同时,由于计算机的精确性,能够尽量避免人为导致的误差,提高预测的精确度。
[Abstract]:With the development of technology, the cooperation between computer and other fields is getting closer and closer. At the same time, with the improvement of living standard and education, people pay more and more attention to the health problem. It is one of the hotspots of current research to apply computer to disease prediction in medical field, and it is of great significance. The prediction of disease is becoming more and more important and people are paying more and more attention to it. At present, there are two problems in the study of disease prediction. First, in the medical field, the vast majority of devices such as computers are still used for disease detection rather than prediction. At this point, the role of computers is only to process images and to image them on the display. Even the final result requires a doctor to manually judge. In the medical equipment of disease diagnosis, the computing equipment only plays the most basic role such as testing data as an auxiliary tool, doctors as the core of the whole process is indispensable. Second, many diseases have similar symptoms before onset or symptoms at the time of onset. Because of the differences in the field of study by experts, experts combine other symptoms of patients according to their knowledge and personal experience. The resulting diagnosis may vary, with serious consequences. To solve the above problems, BP neural network is applied to heart disease prediction. Using the parallelism of nervous system, it can predict heart disease, reduce the failure rate of prediction, and make full use of the same data of these disease prediction. Improving the efficiency of data utilization, the prediction results have the characteristics of saving time and high reliability. It is an effective attempt to apply computer technology to medical field. Computer is not only used for medical detection, but also for prediction. At the same time, because of the accuracy of computer, it can avoid man-made errors and improve the accuracy of prediction.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R318.0;TP183
【参考文献】
相关期刊论文 前6条
1 邓勇,施文康,朱振福;一种有效处理冲突证据的组合方法[J];红外与毫米波学报;2004年01期
2 李萍;曾令可;税安泽;金雪莉;刘艳春;王慧;;基于MATLAB的BP神经网络预测系统的设计[J];计算机应用与软件;2008年04期
3 徐从富;耿卫东;潘云鹤;;Dempster-Shafer证据推理方法理论与应用的综述[J];模式识别与人工智能;1999年04期
4 关欣;衣晓;孙晓明;何友;;有效处理冲突证据的融合方法[J];清华大学学报(自然科学版)网络.预览;2009年01期
5 王俊杰;陈景武;;BP神经网络在疾病预测中的应用[J];数理医药学杂志;2008年03期
6 郭建全;赵伟;黄松岭;;一种改进的D-S证据合成规则[J];系统工程与电子技术;2009年03期
本文编号:1817065
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1817065.html