基于磁流变效应的四连杆假肢膝关节及其构成的下肢假肢的研究
本文选题:假肢膝关节 + 四连杆 ; 参考:《重庆大学》2016年博士论文
【摘要】:下肢假肢是恢复膝上截肢者肢体功能和外观的主要工具,是膝上截肢者返回社会生活的重要辅助装置。假肢膝关节作为下肢假肢最重要的组成部分,不但需要满足基本的行走功能需求,而且更需要模拟健康人的自然摆动,实现与穿戴者剩余肢体的运动协调。目前相对于采用气压式和液压式阻尼器的智能假肢膝关节,基于磁流变效应的假肢膝关节具有响应快、阻尼连续可控、能耗低等优点,已成为智能假肢膝关节研究的热点方向之一。然而,已有的基于磁流变效应的假肢膝关节通常是将商业化的磁流变阻尼器直接安装在假肢膝关节上面,导致磁流变阻尼器不但占用空间较大,而且在行走过程中作相对于小腿假肢部件的来回摆动,从而对假肢膝关节的步态质量产生一定程度的影响。因此,研究磁流变阻尼器在假肢膝关节上的集成原理与方法以及相应的控制方法具有重要的学术意义及实用价值。为了解决上述问题,本文通过将四连杆机构的上、下连杆分别与磁流变阻尼器的活塞杆和外缸体一体化提出并实现了一种新型的基于磁流变效应的四连杆假肢膝关节(Magnetorheological effect based four-bar linkage prosthetic knee,MRFLPK)的原理与结构,并开发了原型样机。采用开发的MRFLPK的原型样机开发了基于磁流变效应的下肢假肢(MR lower limb prosthesis,MRLLP)。在此基础上,仿真分析了MRLLP行走过程中MRFLPK的磁流变阻尼器所需要的阻尼力,研究了实现MRFLPK的小腿摆动控制的原理和方法。建立了MRLLP的快速控制原型系统和实验测试系统,在此基础上,对MRFLPK进行了实验测试和分析。本文的主要研究工作和创新点可以归纳为以下六个方面:1.为了充分利用四连杆机构准确模拟人体膝关节瞬心曲线的特点和磁流变阻尼器可控阻尼的特点,通过将四连杆机构的上、下连杆分别与磁流变阻尼器的活塞杆和外缸体一体化提出并实现了一种MRFLPK的原理与结构,其中,磁流变阻尼器的外缸体上端直接集成在四连杆机构的下连杆下部,磁流变阻尼器的活塞杆通过摆动连杆与四连杆机构的上连杆连接。集成的磁流变阻尼器采用双出杆结构型式。基于此,设计和开发了MRFLPK的原型样机。采用提出并实现的MRFLPK,开发了一种MRLLP,包括开发的MRFLPK的原型样机、小腿假肢部件、脚假肢部件和角度传感器。2.建立了MRFLPK及其构成的MRLLP的运动学和动力学模型。根据建立的运动学和动力学模型,仿真分析了MRLLP行走过程中MRFLPK的磁流变阻尼器所需要的阻尼力。通过刚体动力学仿真软件ADAMS,对MRLLP的3D机械几何模型行走过程中MRFLPK的磁流变阻尼器所需要的阻尼力进行了仿真。通过3D仿真结果与动力学模型仿真分析结果,分析了MRFLPK的磁流变阻尼器在行走时需要的期望阻尼力。3.为了控制MRFLPK,采用基于运动参考曲线的MRFLPK轨迹跟踪控制原理。其中,为了提供MRFLPK的运动参考曲线,提出了一种基于Rayleigh振荡器的运动参考曲线生成器(Rayleigh oscillator based reference curve generator,RORCG)的原理。根据RORCG原理建立了实验系统,对RORCG的有效性进行了实验验证。并采用计算力矩加PD反馈控制算法用于轨迹跟踪控制。4.为了测试MRFLPK,建立了MRLLP的快速控制原型系统,包括MRLLP、控制系统、角度传感器和可控电流源。实验时,控制系统由实时仿真系统(型号:d SPACE DS1103)建立。角度传感器传感MRFLPK的摆动角度。实时仿真系统控制可控电流源向磁流变阻尼器输出控制电流,改变磁流变阻尼器的阻尼力从而实现MRFLPK的摆动角度控制。5.为了测试MRFLPK,开发了模拟人体下肢运动的大腿模拟器。在此基础上,提出了一种用于模拟日常生活步态的受生物诱导的假肢膝关节实验测试系统(Bio-inspired motion platform system for testing prosthetic knees,BIMPS)的原理,并开发了原型样机。其中,BIMPS采用生物诱导传感器实时获取测试者的大腿运动信息并作为运动参考信号实现大腿模拟器跟踪测试者大腿运动的生物诱导控制。对大腿模拟器跟踪理想的参考运动,以及大腿模拟器实时跟踪测试者大腿日常运动的能力进行了实验测试和分析。6.基于建立的MRLLP快速控制原型系统和实验测试系统,从三个方面测试和分析了MRFLPK的摆动角度。测试了MRFLPK在不同恒定电流控制下的摆动角度;基于大腿模拟器,测试了MRFLPK在计算力矩加PD反馈控制算法控制下的摆动角度;基于BIMPS,测试了MRFLPK在计算力矩加PD反馈控制算法控制下的加速和减速运动时的摆动角度。实验结果表明,在计算力矩加PD反馈控制算法控制下的MRFLPK在日常生活中能够实现自然的运动步态。本文的研究工作为研发高性能的MRFLPK及MRLLP奠定了基础。
[Abstract]:Lower limb prosthesis is the main tool to restore the function and appearance of the amputees of the knee. It is an important auxiliary device for the amputee to return to the social life. As the most important part of the lower limb prosthesis, the prosthetic knee joint not only needs to meet the basic needs of the walking function, but also needs to simulate the natural swing of the healthy people and realize the wearer. At present, compared with the intelligent prosthetic knee joint with pneumatic and hydraulic dampers, the prosthetic knee joint based on magnetorheological effect has the advantages of quick response, continuous controllable damping and low energy consumption, which has become one of the hot spots in the research of intelligent prosthetic knee joint. However, the existing magnetorheological effect is false. The joints of the limbs and knees usually install the commercialized magnetorheological dampers directly on the knee joints of the prosthetic limbs, causing the magnetorheological damper not only to occupy a large space but also to swing back and forth relative to the leg part of the leg during the walking process, so that the gait quality of the prosthesis and knee joint is affected to a certain extent. Therefore, the magnetorheological study is studied. The integration principle and method of the damper on the knee joint of the prosthetic limb and the corresponding control method have important academic significance and practical value. In order to solve the above problems, a new type of magnetic field based on the upper and lower connecting rod of the four link mechanism and the piston rod and the outer cylinder of the magnetorheological damper is put forward and realized. The principle and structure of the rheological effect of the four link Magnetorheological effect based four-bar linkage prosthetic knee, MRFLPK, and the prototype prototype are developed. A lower limb prosthesis based on the magnetorheological effect (MR lower limb) is developed with the prototype prototype developed. The damping force required by the magnetorheological damper of MRFLPK during MRLLP walking is studied. The principle and method of controlling the leg swing of MRFLPK are studied. A rapid control prototype system and an experimental test system of MRLLP are established. On this basis, the experimental test and analysis of MRFLPK are carried out. The main research work and innovation point of this paper can be found. The following six aspects are summed up as follows: 1. in order to make full use of the characteristics of the instantaneous center curve of the knee joint of the human body and the characteristics of the controllable damping of the magnetorheological damper, the principle and the conclusion of a kind of MRFLPK are put forward and realized by the integration of the upper and lower connecting rods of the four rod mechanism with the piston and the outer cylinder of the magnetorheological damper. The upper end of the outer cylinder of the magnetorheological damper is directly integrated into the lower connecting rod of the four connecting rod mechanism, and the piston rod of the magnetorheological damper is connected with the upper connecting rod of the four connecting rod mechanism by the swinging rod. The integrated magnetorheological damper adopts the double rod structure type. Based on this, a prototype prototype of MRFLPK is designed and developed. And the implementation of MRFLPK, developed a kind of MRLLP, including the prototype prototype of the developed MRFLPK, the leg prosthesis components, the foot prosthesis components and the angle sensor.2., established the MRFLPK and the kinematic and dynamic model of the MRLLP of the MRFLPK. According to the established kinematics and dynamics model, the magnetorheological resistance of MRFLPK during MRLLP walking was analyzed. The damping force required for the Nei device is simulated by the rigid body dynamic simulation software ADAMS. The damping force required for the magnetorheological damper of MRFLPK during the walking process of the 3D mechanical model of the MRLLP is simulated. The expectation of the magnetorheological damper for the MRFLPK's magnetorheological damper in walking is analyzed by the simulation results of the 3D simulation and the dynamic model. In order to control MRFLPK, the damping force.3. uses the MRFLPK trajectory tracking control principle based on the motion reference curve. In order to provide the motion reference curve of the MRFLPK, a motion reference curve generator based on the Rayleigh oscillator (Rayleigh oscillator based reference curve generator, RORCG) is proposed. An experimental system is established, and the effectiveness of RORCG is verified experimentally. The calculation torque plus PD feedback control algorithm is used for trajectory tracking control.4. to test MRFLPK, and a rapid control prototype system for MRLLP is established, including MRLLP, control system, angle sensor and controllable current source. D SPACE DS1103) set up. The angle sensor sensing the swing angle of the MRFLPK. The real-time simulation system controls the controlled current source to output the control current to the magnetorheological damper and changes the damping force of the magnetorheological damper to realize the MRFLPK swing angle control.5. in order to test the MRFLPK, and develop the thigh simulator to simulate the movement of the lower limb of the human body. On this basis, a biological induced prosthetic knee joint test test system (Bio-inspired motion platform system for testing prosthetic knees, BIMPS) is proposed to simulate daily life gait, and a prototype prototype is developed, in which BIMPS uses a raw material induction sensor to obtain the thigh movement of the tester in real time. Information and as a motion reference signal to achieve the thigh motion control of the thigh motion of the thigh simulator, tracking the ideal reference motion for the thigh simulator, and the ability of the thigh simulator to track the daily motion of the thigh in the test and analysis of the.6. based MRLLP rapid control prototype system based on the test and analysis. The experimental test system tests and analyzes the swing angle of MRFLPK from three aspects and tests the swing angle of MRFLPK under the control of different constant current. Based on the leg simulator, the swing angle of MRFLPK under the control of calculation torque plus PD feedback control algorithm is tested. Based on BIMPS, the calculation moment and PD feedback control of MRFLPK are tested. The experimental results show that MRFLPK can achieve natural motion gait in daily life under the control of calculation torque plus PD feedback control algorithm. The research work of this paper lays a foundation for developing high performance MRFLPK and MRLLP.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R318.17
【参考文献】
相关期刊论文 前10条
1 尚昆;丁皓;陈齐欧;沈力行;;假肢步态实验平台设计[J];中国组织工程研究;2012年04期
2 ;The Knee Joint Design and Control of Above-knee Intelligent Bionic Leg Based on Magneto-rheological Damper[J];International Journal of Automation & Computing;2010年03期
3 ;Survey of locomotion control of legged robots inspired by biological concept[J];Science in China(Series F:Information Sciences);2009年10期
4 关新春;郭鹏飞;欧进萍;;磁流变阻尼器的多目标优化设计与分析[J];工程力学;2009年09期
5 徐祖义;;我国假肢矫形器行业人才需求与培养的探讨[J];管理观察;2009年09期
6 文丽;郦鸣阳;喻洪流;赵改平;沈力行;;下肢假肢步态试验机的设计[J];中国组织工程研究与临床康复;2008年52期
7 张今瑜;吴爱明;张立勋;;一种步态测量方法及其在康复应用中的实验研究[J];医疗装备;2008年02期
8 贺光辉;谭冠政;曾庆冬;钟金;;智能仿生人工腿位置伺服控制系统的设计[J];计算机测量与控制;2007年01期
9 丛德宏;徐心和;;磁流变液智能假腿的摆动相控制[J];系统仿真学报;2006年S2期
10 朱应顺;龚兴龙;李辉;张培强;;磁流变液剪切屈服应力的数值分析[J];中国矿业大学学报;2006年04期
相关博士学位论文 前2条
1 王斌锐;异构双腿行走机器人研究与开发[D];东北大学;2005年
2 杨年峰;人体运动协调规律及其参数化描述[D];清华大学;2001年
,本文编号:1840008
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1840008.html