微流控芯片超快混合器及生物大分子折叠动力学应用研究
本文选题:生物大分子 + 折叠动力学 ; 参考:《华中科技大学》2013年博士论文
【摘要】:生物大分子如蛋白质或核酸的功能与其三维结构密切相关,折叠动力学研究可揭示生物大分子从自由的一级结构形成具有活性高级结构的动态过程,近年来倍受科学界重视。2005年,Science杂志将蛋白质折叠列为21世纪生命科学领域最重要挑战之一。生物大分子的折叠过程一般发生在毫秒、微秒甚至是亚微秒时间水平,而启动折叠反应则需在更短的时间内完成。快速混合技术能使溶液在短时间内达到完全混合从而触发反应,是一种常被用于研究分子折叠反应的有效手段。 大分子折叠动力学研究的传统工具是停流装置,然而毫秒级的时间分辨率和大的样品消耗量限制了其进一步应用,尤其是追踪折叠早期动力学。本文基于微流控芯片连续流概念,提出了三种用于生物大分子折叠动力学研究的快速微混合器,为解决动力学研究领域的难点问题提供了新技术手段。主要研究结果如下: (1)针对低粘度溶液,发展了一种混合时间短且结构简单的新型Z型微混合器。通过计算流体力学模拟和实验手段证实该混合器能在16μs内实现溶液的完全混合,采用该混合器研究了化学发光反应动力学过程;在此基础上,我们缩小该混合器微结构的尺寸,可以使其混合时间缩短至5.5μs,,比目前最快的混沌流混合器(其混合时间是11μs)的混合速度提高了一倍;进一步采用该Z型混合器研究了人类端粒DNA序列在金属离子存在下形成四聚体的早期折叠动力学过程,观察到了该DNA分子由线性结构坍缩成发夹结构的实验证据。 (2)针对高粘度溶液,设计了一种结构简单,加工简便且能快速混合的ω型混合器,通过计算流体力学模拟和实际混合实验,证明该ω型混合器能在579.4μs内实现粘度为水的33.6倍的溶液的完全混合,其混合时间比文献报道的结果缩短了约1000倍;进一步利用该混合器研究了人类端粒DNA序列在分子拥挤环境下形成G-四聚体的早期折叠动力学过程,发现G-四聚体在分子拥挤条件下存在亚毫秒尺度的折叠事件。 (3)针对样本消耗问题,提出了微流控芯片双水力聚焦概念,并设计了一种时间窗口宽、样品消耗量少且结构简单的双水力聚焦微混合器,通过计算流体力学模拟和实验评价,表明该混合器能有效实现两种大分子的快速混合,且其对动力学反应的时间观察范围达4个数量级,可涵盖从亚毫秒到数秒钟(710s-5.36s),而对两种生物大分子的样品消耗均小于0.55μL/min,比已有文献减少了约1000倍;利用该混合器研究了人类端粒G-四聚体与单链DNA结合蛋白(SSBP)的相互作用动力学过程,发现SSBP的结合能触发G-四聚体的去折叠过程,且处于高浓度Na+溶液条件下的G-四聚体其去折叠速率相对更慢。 总之,本文针对目前生物大分子折叠动力学研究中的一些难点问题提出了三种快速微混合器;针对特定的研究问题,采用计算机建模仿真和实验两种方式证明它们均具有好的混合效果和时间分辨率;进一步通过基本生物学问题的探讨证明三者具备研究生物大分子折叠动力学的能力和巨大应用潜力。
[Abstract]:The function of biological macromolecules, such as protein or nucleic acid, is closely related to its three-dimensional structure. Folding kinetics studies can reveal that biological macromolecules form a dynamic process of active high structure from a free first order structure. In recent years, the scientific community has paid much attention to.2005 years. Science magazine listed the egg white matter as the most important field of life science in twenty-first Century. One of the challenges. The folding process of biological macromolecules usually occurs in milliseconds, microseconds or even submicroseconds, and the initiation of the folding reaction is needed in a shorter time. Fast mixing technology can make the solution complete mixing in a short time and trigger the reaction. It is an effective hand used to study the folding reaction of molecules. Paragraph.
The traditional tool for the study of macromolecular folding dynamics is a stop flow device. However, the time resolution and large sample consumption in milliseconds limit its further application, especially the tracking of early folding dynamics. Based on the concept of microfluidic chip continuum, three kinds of rapid micro mixing for the study of the dynamics of biological macromolecule folding are proposed in this paper. The combiner has provided new technical means for solving the difficult problems in the field of dynamics research. The main results are as follows:
(1) a new type of Z type micro mixer with short mixing time and simple structure was developed for low viscosity solution. Through computational fluid dynamics simulation and experimental means, it was proved that the mixer could complete the complete mixing of the solution in 16 mu, and the chemiluminescence reaction kinetics was studied by the mixer. On this basis, we reduced the mixture. The size of the microstructure can shorten the mixing time to 5.5 s, which is more than twice as fast as the fastest chaotic mixer (its mixing time is 11 s). Further, the Z mixer was used to study the early folding kinetics of the human telomere DNA sequence in the presence of metal ions to form four polymer. Experimental evidence for the collapse of the DNA molecule from a linear structure to a hairpin structure is presented.
(2) a kind of Omega mixer with simple structure, simple processing and fast mixing is designed for high viscosity solution. Through the calculation of fluid mechanics simulation and actual mixing experiment, it is proved that the Omega mixer can realize the complete mixing of the solution with the viscosity of 33.6 times the water in 579.4 s. The mixing time is about 10 shorter than the reported result. 00 times, the early folding kinetics of the human telomere DNA sequence formed G- four polymer in a crowded environment was further studied. It was found that there was a submillisecond folding event of the G- four polymer under the molecular crowding condition.
(3) aiming at the problem of sample consumption, a dual hydraulic focusing concept of microfluidic chip is proposed, and a dual hydraulic focusing micro mixer with wide time window, less sample consumption and simple structure is designed. Through the calculation of fluid mechanics simulation and experimental evaluation, it is shown that the mixer can effectively realize the fast mixing of two kinds of macromolecules, and the power of the mixer is effective. The time observation range of the reaction is 4 orders of magnitude, covering from sub milliseconds to several seconds (710s-5.36s), and the consumption of two biological macromolecules is less than 0.55 mu L/min, which is about 1000 times less than that of the existing literature. The interaction kinetics of human telomere G- four polymer and single strand DNA binding protein (SSBP) is studied by this mixer. It was found that the binding of SSBP could trigger the unfolding process of G- four dimers, and the G- four dimers in high concentration Na+ solution had relatively slower rate of unfolding.
In conclusion, three fast micromixers are proposed in this paper for some difficult problems in the study of biological macromolecule folding dynamics. For specific research problems, two ways of computer modeling, simulation and experiment are used to prove that they have good mixing effect and time resolution rate, and further through the basic biological problems. It is proved that the three have the ability to study the folding kinetics of biological macromolecules and great potential for application.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:R318
【共引文献】
相关期刊论文 前10条
1 张平;胡亮红;刘永顺;;主辅通道型微混合器的设计与制作[J];光学精密工程;2010年04期
2 李健;夏国栋;田欣平;;基于成涡结构的微混合器内混合特性研究[J];工程热物理学报;2013年07期
3 Zhu Liu;Zhi-Bin Jiang;Hong Yang;Shu-Ming Bai;汪蓉;薛奇;;CROWDING EFFECT INDUCED PHASE TRANSITION OF AMPHIPHILIC DIBLOCK COPOLYMER IN SOLUTION[J];Chinese Journal of Polymer Science;2013年11期
4 黄卓楠;;微量量热技术测定酶催化反应的研究进展[J];分析仪器;2013年05期
5 李健;夏国栋;李艺凡;;结构参数对非对齐入口式T型微混合器内混合特性的影响[J];北京工业大学学报;2014年02期
6 Elmabruk A. MANSUR;王运东;戴猷元;;Computational Fluid Dynamic Simulation of Liquid-Liquid Mixing in a Static Double-T-shaped Micromixer[J];过程工程学报;2008年06期
7 李健;夏国栋;;布置成涡结构微混合器内的流动与混合特性[J];化工学报;2013年07期
8 LUO LiaoFu;;Quantum theory on protein folding[J];Science China(Physics,Mechanics & Astronomy);2014年03期
9 GAO ZeYang;WANG KaiGe;ZHANG Chen;MA HongWei;WANG GuiRen;BAI JinTao;;Studying the current properties of buffer solution through micro-fluidic channels driven with the pulse bias[J];Science China(Technological Sciences);2014年02期
10 LI HuiMin;XIE YueHui;LIU CiQuan;LIU ShuQun;;Physicochemical bases for protein folding,dynamics,and protein-ligand binding[J];Science China(Life Sciences);2014年03期
相关会议论文 前1条
1 刘文辉;徐萍;盛利;;DNA修复基因多态性与非小细胞肺癌铂类化疗疗效的相关性[A];2013年中国药学大会暨第十三届中国药师周论文集[C];2013年
相关博士学位论文 前10条
1 林莹;基于拉曼光谱的微流体传递过程及其应用的研究[D];华东理工大学;2011年
2 曾谦;声表面波技术在微流控芯片中的集成及应用研究[D];武汉大学;2011年
3 吴青青;集核酸抽提、核酸扩增及在线检测为一体的微流控芯片的研制[D];浙江大学;2011年
4 潘海;蛋白质二聚化和在纳米颗粒表面吸附去折叠的动力学研究[D];南京大学;2012年
5 陈雪叶;微混合器和微反应器的建模计算方法与实验[D];大连理工大学;2012年
6 李颖;微流控芯片超快混合器及生物大分子折叠动力学应用研究[D];华中科技大学;2013年
7 周必胜;几个血管、淋巴管相关基因的调控与功能研究[D];华中科技大学;2013年
8 李丕顺;ABH2调控rDNA转录与UHRF家族在DNA甲基化中的作用研究[D];华东师范大学;2013年
9 徐亮;DNA结构多态性及小分子对其识别与调控[D];武汉大学;2012年
10 郭旺明;重组大肠杆菌工业生产三种蛋白药物过程中的关键技术[D];浙江大学;2012年
相关硕士学位论文 前10条
1 赵新泊;基于SU-8厚胶工艺的SAR型微混合器设计及实验研究[D];浙江大学;2011年
2 陈静;环介导等温扩增技术快速检测果汁中耐热菌的研究[D];河北农业大学;2011年
3 冯瑜菲;猪水肿病大肠杆菌毒力因子鸡卵黄抗体制备及Stx2e基因LAMP方法建立[D];东北农业大学;2011年
4 房玉强;基于微流控芯片的微混合技术研究[D];南京理工大学;2012年
5 向文龙;逆转录环介导等温扩增检测人星状病毒1型[D];南方医科大学;2010年
6 陈伟;结核分枝杆菌复合群多重PCR和LAMP检测方法的建立及临床应用[D];华中农业大学;2010年
7 虞燕;石墨烯增强荧光各向异性及其在铜离子、钾离子分析中的应用研究[D];西南大学;2013年
8 闻一鸣;应用特异性免疫磁珠快速检测单增李斯特菌[D];暨南大学;2013年
9 吴磊;miR-18a对肺腺癌A549细胞放射增敏作用及分子机制研究[D];第三军医大学;2013年
10 李俊英;P53调控的细胞自吞噬在DNA放射损伤反应中的作用及机制研究[D];安徽医科大学;2013年
本文编号:1905351
本文链接:https://www.wllwen.com/yixuelunwen/swyx/1905351.html