当前位置:主页 > 医学论文 > 生物医学论文 >

情绪图片视觉诱发EEG特征提取与分析

发布时间:2018-07-13 15:19
【摘要】:1872年,达尔文在《人类和动物的表情》一书中指出情绪是高级进化阶段的适应工具,从此人们开始了情绪实验与理论的研究。经过100多年,到20世纪后期情绪研究蓬勃发展起来,并与认知、神经科学、脑科学等研究相结合;其研究手段也多种多样,如脑电(EEG)、功能磁共振成像(fMRI)、功能近红外成像(fNIRI)等。EEG因其高时间分辨率和简便易行优势,被广泛用于情绪研究中。 本文设计了基于国际标准情绪图片库(IAPS)的情绪图片视觉诱发实验,被试者观看各等级的情绪图片并采集EEG信号。通过对EEG信号进行特征提取与分析,找到与情绪变化相关的EEG特征,并尝试在EEG特征与情绪等级之间建立对应关系,以期实现基于脑电特征的情绪等级分类识别。文中首先对被试者观看图片时的EEG进行功率谱分析,构建其功率谱脑地形图。由该地形图可知,情绪图片视觉诱发时前额区域脑电最为活跃。信号的频谱分析表明EEG能量主要集中在15Hz以下。为找到EEG信号最具情绪可分性的频段,本文对一些导联的EEG进行了可分频段分析;同时,对EEG信号进行了功率谱熵、相关维数分析,并对AF3、AF4、F3、F4导联的EEG特征进行了最小二乘直线拟合,在情绪等级与EEG特征之间建立了对应关系。在模式识别环节,首先分别使用支持向量机的5-折交叉验证方法和隐马尔科夫模型对所提取的脑电信号特征进行了分类识别;然后进行了特征层融合后的模式识别,得到融合特征的分类识别率。 结果显示,特征信息融合后,本文对情绪图片等级一、五、八的最高平均识别率达到86.5%。目前已经能够通过情绪图片诱发EEG更客观的将最消极、中性、最积极这三种情绪状态区分开,下一步将进一步研究将每个等级区分开的特征提取与分类识别算法。
[Abstract]:In 1872, Darwin pointed out in Human and Animal expressions that emotion is an adaptive tool in the advanced stage of evolution, from which people began to study emotional experiments and theories. After more than 100 years, by the late 20th century, emotional research has flourished, and combined with cognitive, neuroscience, brain science, and so on. EEG, such as EEG, functional magnetic resonance imaging (fMRI), functional near infrared imaging (fNIRI) and so on, are widely used in emotional research because of their high temporal resolution and simplicity. Based on the International Standard emotional Picture Library (IAPS), a visual evoked experiment of emotion picture was designed in this paper. The subjects watched the emotion pictures of different levels and collected EEG signals. Through the feature extraction and analysis of EEG signals, the EEG features related to emotional changes are found, and the corresponding relationship between EEG features and emotion grades is attempted to be established, in order to realize the classification and recognition of emotion grades based on EEG features. In this paper, the EEG of the subjects watching the picture is analyzed by power spectrum analysis, and the brain map of the power spectrum is constructed. According to the topographic map, the frontal area is the most active when the emotional picture is visually induced. Spectrum analysis shows that EEG energy is mainly below 15 Hz. In order to find out the most emotional band of EEG signal, this paper analyzes the frequency band of EEG with some leads, and analyzes the power spectrum entropy and correlation dimension of EEG signal. The EEG features of AF3 / AF4 / F3F4 lead were fitted by least-square straight line fitting, and the corresponding relationship between emotional grade and EEG features was established. In pattern recognition, support vector machine (SVM) 5- fold cross validation method and hidden Markov model are used to classify the extracted EEG features, and then the feature layer fusion pattern recognition is carried out. The classification recognition rate of fusion features is obtained. The results show that after feature information fusion, the highest average recognition rate of emotional image grades 1, 5 and 8 is 86.5%. At present, EEG can be induced by emotional images to more objectively distinguish the three most negative, neutral and active emotional states. The next step will be to further study the feature extraction and classification recognition algorithm.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R318.0

【参考文献】

相关期刊论文 前10条

1 菅小艳;;基于扩展的HMM观察序列概率计算[J];电脑开发与应用;2011年02期

2 季忠,秦树人,彭丽玲;脑电信号的现代分析方法[J];重庆大学学报(自然科学版);2002年09期

3 张起贵;张魁;;基于最小二乘直线拟合的小目标检测[J];电子设计工程;2010年07期

4 张佃中;谭小红;刘昭前;;不同频段功率谱熵及其在心电分析中的应用[J];湖南大学学报(自然科学版);2007年02期

5 于美娟;马希荣;;基于HMM方法的动态手势识别技术的改进[J];计算机科学;2011年01期

6 闫庆华;程兆刚;段云龙;;AR模型功率谱估计及Matlab实现[J];计算机与数字工程;2010年04期

7 邢务强;钮金鑫;;基于AR模型的功率谱估计[J];现代电子技术;2011年07期

8 马庆霞,郭德俊;情绪大脑机制研究的进展[J];心理科学进展;2003年03期

9 朱家富,杨浩,彭拥军;一种计算脑电信号相关维数的改进算法[J];西南师范大学学报(自然科学版);2004年04期

10 文治洪;胡文东;李晓京;;脑电信号相关维数的计算参数研究[J];医疗卫生装备;2004年06期

相关硕士学位论文 前1条

1 刘延刚;前额脑电与血氧信息融合的人—机交互装置研究[D];天津大学;2010年



本文编号:2119856

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/swyx/2119856.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2101b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com