自体骨髓间充质干细胞外基质(ECM)支架在软骨组织工程中的应用研究
[Abstract]:The first part is about the fabrication and performance of aBMSC-dECM scaffold.
Objective To investigate the feasibility of fabricating three-dimensional porous scaffolds by collecting autologous bone marrow mesenchymal stem cell-derived extracellular matrix (aBMSC-dECM) and analyze the performance of the scaffolds.
Methods Bone marrow mesenchymal stem cells (BMSCs) from 2-week-old New Zealand white rabbits were isolated and cultured. The aBMSC-dECM membrane secreted by BMSCs was collected after 4 weeks of primary culture. Three-dimensional porous scaffolds were prepared by cross-linking and freeze-drying techniques. The scaffolds were stained with HE, scanning electron microscopy and compressive strength was tested.
Results The aBMSC-dECM scaffold was a three-dimensional porous sponge-like structure with uniform pore size of 304.4 (+ 108.2) micron, porosity of 93.3 (+ 4.5%), density of 28.7 (+ 1.4 mg/ml) and compressive strength of 6.8 (+ 1.5 KPa).
Conclusion The aBMSC-dECM membrane can be used to fabricate tissue engineering scaffolds. The scaffolds have ideal three-dimensional structure and mechanical properties, and are expected to be a tissue engineering scaffold with high application value.
The second part is the application of aBMSC-dECM scaffold in cartilage regeneration.
Objective to investigate the feasibility of aBMSC-dECM scaffold in cartilage regeneration.
Methods Bone marrow mesenchymal stem cells (BMSCs) from 2-week-old New Zealand white rabbits were isolated and cultured. The aBMSC-dECM membrane secreted by BMSCs was collected after 4 weeks of primary culture. Three-dimensional porous scaffolds were prepared by cross-linking and freeze-drying techniques. Tissue-engineered cartilage was prepared and the control group was treated with atelocollagen scaffold.Cell-scaffold complex was stained with Live-Dead 48 hours after implantation.Tissue-engineered cartilage was cultured in vitro for 1 week,2 weeks and 4 weeks.Histological analysis,Real-Time PCR and Western blotting were used to detect tissue-engineered cartilage.Gross appearance of tissue-engineered cartilage was observed after implantation for 1 week,2 weeks and 3 weeks. Observation, volume measurement, histological analysis, biochemical composition analysis and compressive strength measurement.
Results Live-Dead staining showed that the chondrocytes in the aBMSC-dECM scaffold maintained good biological activity; compared with the control group, the aBMSC-dECM scaffold group had more tissue-engineered cartilage matrix content, more uniform distribution, higher specific gene and protein expression after 4 weeks of culture in vitro; after 3 weeks of implantation, the aBMSC-dECM scaffold group had higher tissue-engineered cartilage content, more uniform distribution, and higher specific gene and protein expression. The volume growth and homogeneity were better than those of the control group, with higher cartilage matrix composition and compressive strength.
Conclusion The aBMSC-dECM scaffold can maintain cell viability and biological function, promote the formation of tissue-engineered cartilage, and can be used as a tissue-engineered cartilage scaffold material with high application value.
The third part is the effect of aBMSC-dECM scaffold on chondrogenic differentiation of autologous bone marrow mesenchymal stem cells.
Objective to investigate the effect of aBMSC-dECM scaffold on chondrogenic differentiation of autologous bone marrow mesenchymal stem cells.
Methods Bone marrow mesenchymal stem cells (BMSCs) from 2-week-old New Zealand white rabbits were isolated and cultured. The aBMSC-dECM membrane secreted by BMSCs was collected after 4 weeks of primary culture. Three-dimensional porous scaffolds were prepared by cross-linking and freeze-drying techniques. The control group was cultured with atelocollagen scaffolds and randomly divided into four groups: (1) C + group: BMSCs / atelocollagen scaffold complex was placed in the culture system containing TGF - beta 3; E + group: BMSCs / aBMSC - dECM scaffold complex was placed in the culture system containing TGF - beta 3; and (3) C - group: BMSCs / atelocollagen scaffold complex; Group E: BMSCs/aBMSC-dECM scaffold complex was placed in a culture system without TGF-beta 3. Histological analysis, Real-Time PCR and biochemical analysis of regenerated tissues were performed on 3, 10 and 21 days after culture in vitro, respectively. Gross observation, volume measurement, chondrogenic differentiation and osteogenic differentiation were performed at 1, 2 and 3 weeks after implantation.
Results The expression of proteoglycan and type II collagen in E + and E - regenerated tissues increased gradually, the expression of COL2A1, ACAN and SOX9 genes increased continuously, the total DNA content of regenerated tissues maintained at a higher level, the GAG content and the ratio of GAG to DNA increased continuously. The expression of proteoglycan and type II collagen was strongly positive in regenerated tissues, but gradually weakened with time, and the osteogenic differentiation was gradually strengthened; while the volume of regenerated tissues in atelocollagen scaffold group was gradually reduced, no proteoglycan was found in matrix, and the expression of type II collagen was found in most areas of the late tissue, which was then regenerated by bone tissue. Replace
Conclusion The aBMSC-dECM scaffold can promote and maintain the chondrogenic differentiation of autologous bone marrow mesenchymal stem cells and is beneficial to the formation of tissue-engineered cartilage.
The fourth part is aBMSC-dECM scaffold combined with bone marrow stimulation to repair articular cartilage defects.
Objective to investigate the effect of bone marrow stimulation (BMS) combined with aBMSC-dECM stent implantation on repairing articular cartilage defects.
Methods Twenty-four healthy adult New Zealand white rabbits were selected to isolate and culture bone marrow mesenchymal stem cells. The aBMSC-dECM membrane secreted by bone marrow mesenchymal stem cells was collected after primary culture for 4 weeks. Three-dimensional porous scaffolds were prepared by cross-linking and freeze-drying techniques. After bone marrow stimulation, aBMSC-dECM scaffolds were implanted into the left knee joint (BMS+Scaffold group). The regenerated cartilage of the two groups were observed, histologically examined and scored, and biochemical compositions were analyzed 6 and 12 weeks after operation.
Results At 12 weeks after operation, the regenerated cartilage in BMS+Scaffold group was more complete and integrated with the surrounding normal cartilage than that in BMS+Scaffold group, and the contents and distribution of proteoglycan and collagen type II in the regenerated cartilage matrix in BMS+Scaffold group were close to that of normal cartilage, mainly round and oval hyaline chondrocytes with the fibers running perpendicular to the articular surface. The levels of DNA and GAG in BMS+Scaffold group were higher than those in BMS group.
Conclusion The combination of aBMSC-dECM stent implantation can effectively improve the effect of bone marrow stimulation in repairing cartilage defects and has high clinical value.
【学位授予单位】:南京医科大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:R318.08
【相似文献】
相关期刊论文 前10条
1 吴俊;软骨组织工程支架材料研究进展[J];中国矫形外科杂志;2004年Z2期
2 龚忠诚;龙星;魏丽丽;吴杨;刘慧;凌彬;林兆全;;壳聚糖/Ⅰ型胶原复合支架材料的制备及其性能的研究[J];新疆医科大学学报;2009年12期
3 刘天军;谭波;罗静聪;邓力;解慧琪;;新型软骨脱细胞基质海绵的制备及生物相容性评价[J];中国修复重建外科杂志;2009年08期
4 许圣荣;赵劲民;苏伟;;脱钙骨基质的制备及与软骨细胞体外复合的实验研究[J];广西医科大学学报;2010年04期
5 康红军;卢世璧;张莉;孙明学;袁玫;许文静;赵斌;郭全义;;人脂肪干细胞复合脱细胞软骨基质支架在生物反应器中构建组织工程软骨[J];中国组织工程研究与临床康复;2007年10期
6 李霞;陈露;万法盛;李莉莉;蒋波;;软骨组织工程支架材料的胶原结构分析[J];中国组织工程研究与临床康复;2010年03期
7 毛艳;张西正;;软骨组织工程中细胞外基质的研究[J];中国临床康复;2006年29期
8 彭超;蒋电明;;不同种类组织工程软骨支架材料的临床应用及其发展方向[J];中国组织工程研究与临床康复;2008年36期
9 韩宁波;赵建宁;;软骨组织工程支架材料的研究进展[J];医学研究生学报;2010年01期
10 祁伟;左强;崔维顶;范卫民;;采用纤维蛋白凝胶种植技术体外构建组织工程软骨[J];江苏医药;2011年12期
相关会议论文 前10条
1 魏迪;孙彬;邢彬;高洁;王连永;孔德领;俞耀庭;;PLGA、明胶共纺支架促进细胞向材料内部生长[A];天津市生物医学工程学会2008年年会暨首届生物医学工程与临床论坛论文集[C];2008年
2 冯优;王凤山;王秀云;;透明质酸与组织工程[A];2007年全国生化与生物技术药物学术年会论文集[C];2007年
3 匡世军;张志光;何一青;苏凯;;兔颞下颌关节盘纤维软骨细胞与聚乳酸支架材料复合培养的实验研究[A];第七次全国颞下颌关节病学及(牙合)学研讨会暨《颞下颌关节紊乱病及口颌面疼痛的基础与临床进展》国家级继续教育学习班论文汇编[C];2008年
4 张亚;王晓东;;细胞复合型丝素支架材料修复兔桡骨骨缺损[A];苏州市自然科学优秀学术论文汇编(2008-2009)[C];2010年
5 黄庆聪;;碗扣脚手架在现浇混凝土连续箱梁施工中的应用[A];中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集[C];2002年
6 秦胜男;陈鸿辉;杨小红;叶春婷;康宁;谭见容;戴丽冰;梁伟国;;组织工程胶原海绵支架材料的制备及孔径结构分析[A];第七届全国创伤学术会议暨2009海峡两岸创伤医学论坛论文汇编[C];2009年
7 吴彬杉;韩冬霏;秦斌;田天;张倩;;三维多孔支架材料及致孔相关性[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
8 任杰;;组织工程用支架材料研究进展[A];2005年上海市医用生物材料研讨会论文汇编[C];2005年
9 朱晓海;江华;袁湘斌;赵耀忠;章建林;孙美庆;张盈帆;张文俊;林子豪;;1993~2006年间277例耳廓再造手术体会[A];第四届华东六省一市整形外科学术会议暨2007年浙江省整形、美容学术会议论文汇编[C];2007年
10 闫福华;刘崇武;周广东;崔磊;刘伟;曹谊林;;骨髓基质细胞在三种可吸收生物膜上附着及增殖的比较研究[A];第一届《组织工程在口腔医学中的应用》研习班讲义[C];2002年
相关重要报纸文章 前10条
1 王世焕 韩富明;我国首创用鸵鸟骨等做人造骨支架材料[N];医药经济报;2004年
2 记者 白毅;同济大学骨组织支架材料相关研究通过鉴定[N];中国医药报;2006年
3 邹争春 刘苹;新型仿生支架材料解决人体骨缺损修复难题[N];中国医药报;2011年
4 吴一福;四军医大制备成功仿生神经新型支架材料[N];中国医药报;2006年
5 马艳红;吕树铮教授认为:临床不会回到金属裸支架时代[N];中国医药报;2008年
6 韩富明 苏玉军 杨月清;四医大口腔医院首创用动物骨做人造骨支架材料[N];陕西日报;2004年
7 记者 蒋升阳;人体器官能在体外“种”出来[N];人民日报;2006年
8 本报记者 马凌霜;鼠背植人耳为哪般[N];广东科技报;2011年
9 本报记者 唐闻佳;“一只假耳朵,骗取三个亿”?[N];文汇报;2011年
10 谢秉源 周去非 王瑛慧;人体器官能在体外“种”出来[N];中国医药报;2006年
相关博士学位论文 前10条
1 唐成;自体骨髓间充质干细胞外基质(ECM)支架在软骨组织工程中的应用研究[D];南京医科大学;2013年
2 黄博;Ⅱ型胶原/透明质酸/6-硫酸软骨素组织工程髓核支架材料的体内外生物学性能研究[D];第三军医大学;2010年
3 王奎重;低孔率血流导向支架治疗兔囊状宽颈动脉瘤的实验研究[D];第二军医大学;2010年
4 吴超;可降解铁支架可行性的初步研究[D];北京协和医学院;2012年
5 张凌汉;多孔羟基磷灰石支架材料的制备及其材料学特性和生物学特性的实验研究[D];北京协和医学院;2013年
6 周圣华;早期支架内血栓的危险因素分析及相关预防措施评价[D];中国人民解放军军医进修学院;2010年
7 陶凯;乌贼骨转化羟基磷灰石材料(CBHA)的制备及其作为骨组织工程支架材料的应用基础研究[D];中国人民解放军第四军医大学;2003年
8 贺慧霞;牙髓干细胞分离鉴定及其制备组织工程化牙本质牙髓复合体的实验研究[D];第四军医大学;2005年
9 徐佳;纤维组织工程支架的制备及性能研究[D];吉林大学;2009年
10 王敏;人脂肪干细胞在PLGA支架上向肝细胞诱导分化的实验研究[D];中国人民解放军军事医学科学院;2009年
相关硕士学位论文 前10条
1 张善涛;兔皮质骨来源成骨细胞与三种支架材料的体外实验研究[D];福建中医药大学;2010年
2 刘扬;组织工程化构建骨支架材料—无机活性元素支架材料的机械强度的研究[D];安徽医科大学;2011年
3 刘靖yN;无机活性元素支架材料对表皮细胞的生物诱导作用的研究[D];安徽医科大学;2011年
4 李程;仿生多层骨软骨支架材料的制备[D];中国地质大学(北京);2012年
5 张琦辉;颅骨缺损生物性修复的实验研究[D];汕头大学;2005年
6 丑修建;组织工程复相(羟基磷灰石+β-磷酸三钙)多孔陶瓷支架材料的制备研究[D];昆明理工大学;2005年
7 常秀梅;组织工程方法构建牙周组织的实验研究[D];第一军医大学;2005年
8 田奇;膀胱移行上皮细胞的体外培养及其支架复合物的制备[D];吉林大学;2007年
9 李潇;DSCT对冠状动脉支架植入术后的评价[D];昆明医学院;2010年
10 胡顺鹏;新型胶原真皮支架材料的制备与性能表征[D];山东大学;2010年
,本文编号:2221676
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2221676.html