当前位置:主页 > 医学论文 > 生物医学论文 >

无创脑电阻抗检测在神经科的应用研究

发布时间:2018-09-11 21:12
【摘要】:研究背景与目的:颅内压增高和脑水肿是神经科疾病及其它全身疾病常见的一种并发症,会影响脑血流灌注、缺血、继发性脑损伤。目前,对于高颅压或脑水肿的诊断主要依据临床表现、眼底检查、头颅CT和MRI影像学检查、腰椎穿刺以及颅内压监测等几个方面。无创脑电阻抗技术是应用于人体脑组织的一项新技术,操作方法简单、无创伤,能对颅内压进行连续动态监测,可直接得出反应脑水肿状况的电阻抗扰动系数值。本实验采用重庆BORN-BE公司生产的无创脑水肿动态监护仪对可能伴有脑水肿或颅内压增高的患者(包括脑梗死、脑出血、脑积水、脑炎和各类脑病以及头痛等)进行脑电阻抗测定,探讨脑电阻抗扰动系数与各种神经疾病和各种病理生理情况的关系,包括发病时间和病程、病变部位和体积、腰穿脑脊液压力等的关系,评价无创脑水肿监护仪在神经重症监护的实用性和有效性。 对象和方法:2010年7月至2012年2月沈阳军区总医院神经内科住院和门诊患者共132例。脑梗死85例:男48例,女37例,年龄40~78岁,平均年龄59±9.3岁,符合1995年中华医学会第四次全国脑血管病学术会议修订标准,所有病例均不包括腔隙性梗死;脑出血8例:男6例,女2例,平均年龄55±14.5岁,符合1995年中华医学会第四次全国脑血管病学术会议修订标准,GCS评分在8分以上,采取内科保守治疗。基底节区出血2例,丘脑出血破入脑室的患者2例,基底节区出血破入脑室3例,小脑出血1例。入院时血肿体积(出血量)为6~62ml,平均39.14±8.71ml。病毒性脑炎11例,男6例,女5例,平均年龄38±8.3岁。脑病10例:脑白质病变5例,代谢性脑病5例,男6例,女4例,平均年龄42±8.7岁。头痛患者10例,男5例,女5例,平均年龄32±9.4岁。脑积水患者8例,男3例,女5例,平均年龄35±3.5岁。根据头颅CT或MRI检查计算脑梗死和脑出血患者病灶体积及病灶最大径,与所测电阻抗(CEI)值进行相关性分析。行腰穿检查的患者,测定脑脊液(CSF)压力值的同时行无创脑水肿监测,将所测定的CSF压力值与CEI值进行相关性分析。 结果: 1.132例不同神经疾病患者的测定结果,CEI升高的异常率有所不同。脑梗死66.0%,脑出血50%,病毒性脑炎63.6%,脑病70%,头痛70%,脑积水37.5%。 2.37例次腰穿压力与CEI值作直线相关分析。直线方程为y=6.48x+78.28(y代表腰穿压力,x为对应CEI值),腰穿压力与CEI值两者呈正相关(r=0.654,p<0.05,n=37)。同一患者行多次腰穿,CEI值与脑脊液压力值呈正相关(r=0.855,p<0.05),直线方程为y=8.78x+66.98(y代表腰穿压力,x为对应CEI值)。 3.脑梗死:CEI值在脑梗死患者发病后逐渐升高,发病后4~7天达到高峰,随后逐渐回落。4~7天时梗死侧与梗死对侧大脑半球CEI值出现分离,即梗死侧CEI值高于梗死对侧。脑梗死发病后4~7天时,,梗死侧大脑半球CEI值为13.59±3.10,明显高于发病后1~3天时的CEI值(10.86±2.14)和发病7天后的CEI值(11.18±2.38),p<0.05,也高于同时期梗死对侧大脑半球CEI值(11.53±3.44),p<0.05。脑梗死部位不同,CEI异常率不同。大脑皮质梗死和基底节区梗死异常率分别为85.6%和74.5%,而脑干和小脑梗死的异常率仅18.8%。结果提示,梗死灶越靠近皮质,CEI异常率越高。脑梗死患者梗死侧CEI值与梗死体积呈正相关,直线方程为:y=10.9x-24.653(n=65,r=0.552,P<0.01)。 4.脑出血:脑出血后1~3天、4~7天以及>7天所测得的血肿侧大脑半球CEI值分别为11.56±2.34、12.98±2.60和9.54±1.98,血肿对侧大脑半球CEI值分别为9.45±2.23、10.01±2.54和8.04±1.78。脑出血后1~3天和4~7天,血肿侧与血肿对侧大脑半球阻抗值比较有显著差异(p<0.01)。无创脑水肿监护仪监测20例次,所得的CEI值与血肿体积做相关分析,P>0.05。按出血有无破入脑室分为:伴脑室积血40%,无脑室积血66.7%。 5.11例病毒性脑炎,无创脑水肿监测15例次,腰穿脑脊液压力与所测电阻抗值呈线性关系,直线方程为Y=8.78x+56.9(Y:腰穿压力,x:对应的CEI值),p<0.01,r=0.634。 6.各种脑病的CEI值均高于正常,而双侧CEI值分别为14.18±2.79和14.17±2.98,P>0.05,差异无统计学意义。 7.10例头痛患者,CEI值高于正常。其中2例行腰穿检查,腰穿CSF压力在正常范围。 8.不同年龄、性别监测的CEI值的差异无统计学意义(P0.05)。 结论: 1.无创脑水肿测定可较敏感地反应颅内压力;CEI与腰穿压力值呈正相关,CEI越高,提示腰穿压力越高。 2.无创脑水肿测定可较敏感地反应脑梗死和脑出血后脑水肿的变化,CEI值越高,提示水肿更严重,梗死或出血的病灶体积更大。无创脑水肿监测对大脑半球脑梗死更敏感。 3.无创脑水肿测定是一种简便、无创的检查方法,能对各种脑部疾病(缺血、出血、损伤、中毒、炎症等)产生的颅内压增高和脑水肿的程度做出初步判断,对神经科临床工作有指导作有用。
[Abstract]:BACKGROUND AND OBJECTIVE: Increased intracranial pressure and brain edema are common complications of neurological diseases and other systemic diseases, which may affect cerebral blood flow perfusion, ischemia, and secondary brain injury. Non-invasive brain electrical impedance technique is a new technique applied to human brain tissue. It is simple and non-invasive. It can monitor the intracranial pressure continuously and dynamically. The value of electrical impedance perturbation coefficient can be obtained directly, which can reflect the condition of brain edema. Brain electrical impedance measurements were performed in patients with possible cerebral edema or elevated intracranial pressure (including cerebral infarction, cerebral hemorrhage, hydrocephalus, encephalitis, various encephalopathy and headache, etc.) to investigate the relationship between the disturbance coefficient of brain electrical impedance and various neurological diseases and various pathophysiological conditions, including the time and course of the disease, the location and volume of the lesion, and the waist. To evaluate the practicability and effectiveness of noninvasive brain edema monitor in neurological intensive care.
PARTICIPANTS AND METHODS: From July 2010 to February 2012, 132 inpatients and outpatients in the Department of Neurology, General Hospital of Shenyang Military Region were enrolled. 85 patients with cerebral infarction, 48 males and 37 females, aged 40-78 years, with an average age of 59 (+ 9.3), met the revised criteria of the Fourth National Conference on Cerebrovascular Diseases of the Chinese Medical Association in 1995. Eight patients died of cerebral hemorrhage: 6 males and 2 females, with an average age of 55 65507 11 cases of viral encephalitis, 6 males and 5 females, with an average age of 38.3 years. 10 cases of encephalopathy: 5 cases of leukoencephalopathy, 5 cases of metabolic encephalopathy, 6 males and 4 females, with an average age of 42.7 years. 10 cases of headache, 5 males and 5 females, with an average age of 32.9.4 years. There were 3 males and 5 females with an average age of 35 (+ 3.5 years). The lesion volume and the maximum diameter of lesions were calculated by CT or MRI, and the correlation between the lesion volume and CEI was analyzed. Correlation analysis was performed.
Result:
The abnormal rate of CEI elevation was different in 132 patients with different neurological diseases, including cerebral infarction 66.0%, cerebral hemorrhage 50%, viral encephalitis 63.6%, encephalopathy 70%, headache 70%, hydrocephalus 37.5%.
The linear equation was y = 6.48x + 78.28 (y represents lumbar puncture pressure, x corresponds to CEI value). The lumbar puncture pressure was positively correlated with CEI value (r = 0.654, P < 0.05, n = 37). Multiple lumbar punctures were performed in the same patient. The CEI value was positively correlated with CSF pressure (r = 0.855, P < 0.05), and the linear equation was y = 8.78x + 66.98 (y = 8.78x + 66.98). It represents waist pressure and X corresponds to CEI.
3. Cerebral infarction: CEI value gradually increased in patients with cerebral infarction, reached a peak 4-7 days after the onset, and then gradually decreased. 4-7 days after the onset of cerebral infarction and infarction on the opposite side of the cerebral hemisphere CEI value separated, that is, the infarct side of the CEI value was higher than the opposite side of the infarction. The CEI values at 1-3 days after onset (10.86+2.14) and 7 days after onset (11.18+2.38), P < 0.05, were also higher than those in the contralateral cerebral hemisphere (11.53+3.44), P < 0.05. The abnormal rates of CEI were different in different infarct sites, 85.6% in cerebral cortex infarction and 74.5% in basal ganglia infarction, and 85.6% in brainstem and 74.5% in cerebellar infarction. The abnormal rate of CEI was only 18.8%. The results showed that the closer the infarct was to the cortex, the higher the abnormal rate of CEI was.
4. Intracerebral hemorrhage: The CEI values of hematoma hemisphere were 11.56 (+ 2.34), 12.98 (+ 2.60) and 9.54 (+ 1.98) on the 1-3 days, 4-7 days and > 7 days after intracerebral hemorrhage, respectively. The CEI values of hematoma hemisphere on the opposite side were 9.45 (+ 2.23), 10.01 (+ 2.54) and 8.04 (+ 1.78), respectively. There was significant difference (p < 0.01). 20 cases were monitored by non-invasive brain edema monitor. The CEI value was correlated with the volume of hematoma (P > 0.05). According to whether the hemorrhage broke into the ventricle, it was divided into 40% with ventricular hemorrhage and 66.7% without ventricular hemorrhage.
In 5.11 cases of viral encephalitis, 15 cases of non-invasive brain edema were monitored. The linear equation was Y = 8.78x + 56.9 (Y: lumbar puncture pressure, x: corresponding CEI value), P < 0.01, r = 0.634.
6. The CEI values of all kinds of encephalopathy were higher than normal, while the bilateral CEI values were 14.18 (+ 2.79) and 14.17 (+ 2.98) respectively, P > 0.05, with no significant difference.
In 7.10 patients with headache, the CEI value was higher than normal, 2 of them underwent lumbar puncture, and the pressure of lumbar puncture CSF was within normal range.
8. there was no significant difference in CEI between different age and sex monitoring (P0.05).
Conclusion:
1. Non-invasive brain edema measurement can more sensitive response to intracranial pressure; CEI and lumbar puncture pressure was positively correlated, the higher the CEI, suggesting the higher the lumbar puncture pressure.
2. Non-invasive brain edema measurement can more sensitively reflect the changes of cerebral edema after cerebral infarction and cerebral hemorrhage. The higher the CEI value, the more serious the edema, the larger the size of the infarction or hemorrhage. Non-invasive brain edema monitoring is more sensitive to cerebral infarction.
3. Non-invasive brain edema measurement is a simple and non-invasive method, which can make a preliminary judgment on the increase of intracranial pressure and the degree of brain edema caused by various brain diseases (ischemia, hemorrhage, injury, poisoning, inflammation, etc.). It is useful to guide the clinical work of neurology.
【学位授予单位】:大连医科大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R741.044

【参考文献】

相关期刊论文 前10条

1 李玉贤;孟庆华;;生物电阻抗技术在肝病病人人体成分测量中的应用[J];肠外与肠内营养;2006年04期

2 许川;创伤性脑水肿的发生机制及治疗研究进展[J];创伤外科杂志;2004年05期

3 周红杰,王景周,张侨申,王琳,高东,杨清武,王宇明;脑出血患者脑水肿的无创动态监测[J];第三军医大学学报;2004年17期

4 陈慧;王健;董为伟;毛思中;;无创脑电阻抗测定动态监测蛛网膜下腔出血后脑水肿的临床研究[J];第三军医大学学报;2010年15期

5 任超世;生物电阻抗技术与人体功能信息[J];电子科技导报;1998年11期

6 王平,何为;无创脑水肿检测新技术和临床应用分析[J];重庆大学学报(自然科学版);2003年08期

7 韦武腾;颅内压监测的进展[J];华夏医学;2003年02期

8 董国亚,高上凯;生物阻抗的测量方法[J];国外医学.生物医学工程分册;2000年05期

9 刘兴;李韪韬;钱志余;张建华;;基于近红外光电技术的脑水肿无创监测方法[J];光子学报;2010年12期

10 杭春梅,马琳;新生儿无创颅内压监测[J];河南实用神经疾病杂志;2000年02期

相关博士学位论文 前1条

1 张帅;人体胸腔电阻抗成像系统研究[D];河北工业大学;2009年

相关硕士学位论文 前3条

1 刘胜洋;动态脉搏波阻抗谱的理论与实验研究[D];天津大学;2006年

2 沙洪;躯干细分生物电阻抗人体成分检测方法研究[D];中国协和医科大学;2008年

3 张红;肝硬化肝性脑病大鼠模型occludin蛋白的表达与脑水肿关系的研究[D];中国医科大学;2010年



本文编号:2237850

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/swyx/2237850.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4f0a7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com