基于B超图像的脂肪肝检测系统的研究
[Abstract]:At present, the main method of fatty liver examination is ultrasonic imaging, but because of the shortcomings and shortcomings of ultrasound imaging, some computer-aided methods are needed to achieve a better recognition effect. However, the existing computer-aided methods for recognition of fatty liver have the disadvantages of low recognition rate and large amount of calculation, and can not meet the requirements of the construction of modern digital hospitals. This paper puts forward a new solution to the above situation, which can promote the recognition of fatty liver and the construction of hospital information. In recognition of fatty liver, this paper proposes different solutions for two different types of fatty liver. For non-uniform fatty liver, image enhancement method is adopted, combining the advantages of histogram equalization and homomorphism filtering, the image of suspected regional fatty liver is enhanced to highlight the lesion position and remind users to pay attention to it. For diffuse fatty liver, this paper analyzes and compares the existing computer-aided recognition methods and their advantages and disadvantages, and proposes a multi-level gray difference recognition method based on B-ultrasound image. Firstly, a trapezoid area is delineated on the liver image of interest, and the noise problem of vascular image in the delineated area is removed by using an improved median filtering algorithm. Then the delineated area is divided into a plurality of small trapezoid areas. The average grayscale value of each small trapezoid region is calculated to get the multilevel grayscale difference feature of liver picture, and then the multilevel gray difference characteristic curve of normal liver and fatty liver is analyzed and compared to determine the validity of multilevel grayscale difference feature. Finally, BP artificial neural network is used for feature recognition to achieve the purpose of image discrimination. In hospital information construction, this paper uses different image acquisition methods to connect the fatty liver detection system with the hospital image database, which supports the DICOM3.0 digital interface and the analog signal output of the S-terminal. To realize the sharing of hospital information. In particular, a semantic report template generation method is proposed for the writing of hospital medical records, which improves the efficiency of doctors.
【学位授予单位】:广西工学院
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R197.39;TP391.41
【参考文献】
相关期刊论文 前10条
1 侯宏花,陈树越,郭保全;医学B超图像降噪处理的三种方法比较[J];测试技术学报;2003年03期
2 邓娟,杨家明;一种改进的BP算法神经网络[J];东华大学学报(自然科学版);2005年03期
3 李明霞;任伯绪;龚兰;;脂肪肝超声诊断的研究进展[J];长江大学学报(自科版)医学卷;2009年02期
4 黄旭;;DICOM医学图像数据的读取[J];计算机时代;2008年11期
5 李军,丁萃菁;一种改进的BP算法在实际应用中的研究[J];计算机仿真;2004年02期
6 赵德杰;田裕鹏;;DICOM网络通信模型的设计与实现[J];计算机与数字工程;2006年04期
7 王鹰汉;占明;;用VC++和DCMTK显示DICOM医学图像[J];科技信息(科学教研);2008年02期
8 陈衍斯;李彬;田联房;陈萍;;PACS中DICOM图像传输与存取系统的设计[J];生物医学工程研究;2008年02期
9 纪现才,苏开娜;DICOM中网络通信协议的研究与设计[J];计算机工程与设计;2004年03期
10 张达荣,邱德凯;帮你认识脂肪肝[J];上海医药;1995年07期
相关重要报纸文章 前1条
1 记者 闫煈;[N];健康报;2011年
相关硕士学位论文 前7条
1 章蓉;对非酒精性脂肪肝患者健康教育及饮食干预的效果分析[D];山东大学;2011年
2 王传永;基于人工神经网络的血液细胞图像分割方法研究[D];天津理工大学;2005年
3 李瑞霞;一种改进的基于本体的语义匹配算法研究[D];太原理工大学;2007年
4 梁娜;基于语义的图像检索技术在医学影像系统中的研究与应用[D];西北大学;2008年
5 肖红;医学图像的格式转换与分析处理[D];北京交通大学;2008年
6 罗煜;基于超声图像的脂肪肝疾病量化分析[D];华中科技大学;2007年
7 陈韧斌;A医院信息化建设评价及其改进策略研究[D];复旦大学;2009年
本文编号:2256847
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2256847.html