可注射型PNIPAM水凝胶的制备及性能研究
[Abstract]:Environmental sensitive hydrogel has strong hydrophilicity, good flexibility and response to external stimuli, which makes it have a broad application prospect in sensor, drug controlled release switch and other fields. However, because the small molecular crosslinkers used in the preparation of hydrogels are often toxic and the crosslinked polymer networks are difficult to degrade, it is of great significance to develop non-toxic and biodegradable environment-sensitive "intelligent" hydrogels. In this study, aldehyde-hydrazine crosslinking was used as macromolecular crosslinking agent using aldehyde-containing biodegradable oxidized starch as crosslinking agent by molecular design. At room temperature, the hydrazine group on the thermo-sensitive copolymer of poly (N-isopropylacrylamide) was crosslinked with the aldehyde group on the cross-linking agent of oxidized starch. An injectable and biodegradable temperature sensitive poly (N isopropyl acrylamide) (PNIPAM) hydrogel was prepared. The main work of this paper is as follows: (1) the thermo-sensitive copolymer containing hydrazine group was prepared. Firstly, N-isopropylacrylamide (NIPAM) was used as the main monomer and acrylic acid (AA) as the functional copolymerization monomer. The copolymerization was carried out in ethanol by free radical solution copolymerization. Three kinds of carboxyl content poly (N-isopropylacrylamide) copolymer: poly (NIPAM-co-AA were prepared. Then, under the action of condensation agent, the side chain carboxyl group of poly (NIPAM-co-AA) copolymers was dehydrated and condensed by one end hydrazine group of adipic hydrazide. The modified poly (NIPAM-co-AA) copolymers with hydrazine group on the side chain: poly (NIPAM-co-AA)-hdz. have been successfully prepared. The carboxyl content of the polymer was determined by conductance titration to calculate the conversion of carboxyl group to hydrazine group, and the structure of the polymer was characterized by infrared spectroscopy. (2) oxidized starch containing aldehyde group was prepared. Three kinds of oxidized starch (dialdehyde starch) were prepared from biodegradable low molecular weight corn starch under the action of oxidizer sodium metperiodate. The content of aldehyde group was determined by conductance titration assisted by hydroxylamine hydrochloride, and the structure of polymer was characterized by infrared spectroscopy. (3) Non-toxic and biodegradable dialdehyde starch was used as macromolecular crosslinking agent. The injectable and biodegradable PNIPAM hydrogels were prepared by "aldehyde hydrazine crosslinking" technique. The swelling, degradation and drug release properties of the hydrogels with different crosslinking densities were studied. The structure of the polymer was characterized by IR spectra. The results showed that hydrogel had strong swelling ability, good drug loading capacity and drug release effect, and could respond to temperature stimulation. Hydrogels can be hydrolyzed by acid, including the degradation of starch and the hydrolysis of aldehyde-hydrazine crosslinking bonds, and the higher the crosslinking density, the slower the degradation.
【学位授予单位】:北京化工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R318.08
【共引文献】
相关期刊论文 前10条
1 Xing-xun Liu;Yan-fei Wang;Nuo-zi Zhang;Robert A.Shanks;Hong-sheng Liu;Zhen Tong;Ling Chen;余龙;;Morphology and Phase Composition of Gelatin-Starch Blends[J];Chinese Journal of Polymer Science;2014年01期
2 台宗光;孙霖;朱全刚;张玮;王晓宇;戴子渊;张丽娟;高申;;聚乙二醇修饰的聚精氨酸基因载体的构建及其体外评价[J];第二军医大学学报;2014年10期
3 Ping Wang;Liang Zhao;Jason Liu;Michael D Weir;Xuedong Zhou;Hockin H K Xu;;Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells[J];Bone Research;2014年03期
4 刘小培;王俊伟;李中贤;徐丹;余学军;;温度、pH敏感水凝胶的研究进展[J];广东化工;2014年23期
5 黄成;申迎华;吴鹏;贾兰;邱丽;温庆昶;;LCST可调无规共聚物的相行为及聚集行为[J];高分子材料科学与工程;2015年02期
6 徐萍萍;杨利华;魏桂芝;张建祥;东亚君;梁志清;;男性避孕纳米粒的制备与体外实验研究[J];第三军医大学学报;2015年04期
7 高鹏博;冯玉红;李嘉诚;颜慧琼;黄俊浩;武田田;黄文红;;改性海藻酸钠聚集行为对电纺纳米纤维形貌的影响[J];高等学校化学学报;2015年04期
8 Zhen-bing Li;Yan-hui Xiang;Xian-jing Zhou;Jing-jing Nie;Mao Peng;杜滨阳;;Thermo-sensitive Poly(DEGMMA-co-MEA) Microgels: Synthesis, Characterization and Interfacial Interaction with Adsorbed Protein Layer[J];Chinese Journal of Polymer Science;2015年11期
9 陈栋栋;陈杰;田华雨;陈学思;孙俊奇;;差别性释放两种药物的层层组装聚合物膜[J];高等学校化学学报;2015年11期
10 金莎;潘元佳;汪长春;;回流沉淀聚合:单分散聚合物纳米水凝胶微球制备新技术[J];化学学报;2013年11期
相关会议论文 前3条
1 Liqian Mo;Lianbing Hou;Dan Guo;Xiaoyan Xiao;Ping Mao;Xixiao Yang;;Preparation and Characterization of Teniposide PLGA Nanoparticles and Their Uptake in Human Glioblastoma U87MG Cells[A];2013年广东省药师周大会论文集[C];2013年
2 张恩菘;赵勇;邱雪鹏;姬相玲;;流变仪研究聚酰胺酸有机凝胶的形成机理[A];第十二届全国流变学学术会议论文集[C];2014年
3 张恩菘;赵勇;邱雪鹏;姬相玲;;流变仪研究聚酰胺酸有机凝胶的形成机理[A];第十二届全国流变学学术会议论文集[C];2014年
相关博士学位论文 前10条
1 焦燕;空心玻璃微球表面仿生沉积磷灰石涂层细胞微载体的研究[D];山东大学;2013年
2 刘涛;基于响应性聚合物的荧光化学传感器研究[D];中国科学技术大学;2013年
3 胡亮;界面作用构筑有机硅梯度材料及响应性光子材料和水凝胶粒子[D];武汉理工大学;2013年
4 李西波;载阿霉素葡聚糖金磁复合微粒在肝癌磁导靶向治疗中的应用研究[D];西北大学;2013年
5 罗文波;脉冲电场—活性氧协同作用降解壳聚糖研究[D];华南理工大学;2011年
6 车玲;含羧基小分子药物介导亲水聚合物自组装构建纳米给药系统研究[D];第三军医大学;2013年
7 马方奎;基于壳聚糖PLGA纳米载体的构建及其水解释药研究[D];中国海洋大学;2013年
8 武敬亮;载阿霉素组氨酸修饰透明质酸纳米粒的制备及抗肿瘤研究[D];中国海洋大学;2013年
9 胡远渡;聚合物微凝胶的微流控制备及形貌与功能调控研究[D];华中科技大学;2013年
10 籍勇亮;磁性纳米颗粒的靶向输运及其在肺靶向中的应用研究[D];重庆大学;2013年
相关硕士学位论文 前10条
1 许欢;多功能磁性复合纳米材料在生物成像与肿瘤治疗中的应用[D];苏州大学;2013年
2 姚莹;Fe_3O_4磁性纳米颗粒表面接枝聚合物制备的研究[D];兰州理工大学;2013年
3 黄碧妃;磁性纳米粒子—荧光量子点复合微球的合成及性能研究[D];福建师范大学;2013年
4 黄晓仪;淀粉基载体材料与基因复合体结构对基因细胞转染特性的影响[D];华南理工大学;2013年
5 王彦妹;肝癌靶向性果胶基纳米给药体系的初步研究[D];南华大学;2013年
6 吕淑一;以改善热稳定性和口感为目的的明胶软糖配方优化[D];江南大学;2013年
7 徐倩;复合载药微球壳聚糖温敏凝胶的初步研究[D];天津医科大学;2013年
8 周伟;果胶包覆维生素C纳米脂质体的制备及其性质研究[D];南昌大学;2013年
9 颜慧琼;海藻酸盐水凝胶缓/控释农药载体的制备及性能研究[D];海南大学;2013年
10 胡文涛;海藻酸疏水衍生物水悬纳米胶囊的制备及其性能表征[D];海南大学;2013年
,本文编号:2317670
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2317670.html