近红外光谱无创血糖检测中的偶然相关及波长选择的研究
[Abstract]:Diabetes is a worldwide problem that endangers human health, and the prevalence of diabetes is on the rise. Noninvasive blood glucose detection can reduce the inconvenience and pain of daily monitoring of blood glucose concentration. Near-infrared spectroscopy is widely used in noninvasive blood glucose detection, but its spectral composition is complex, the blood glucose signal is weak, the wavelength is multiple correlation, and the detection accuracy needs to be improved. Based on this, the problem of accidental correlation and wavelength selection in near infrared spectroscopy (NIR) blood glucose detection is studied. When using near infrared spectroscopy (NIR) to detect blood sugar, it is necessary to establish a model by means of chemometrics to realize quantitative analysis of unknown samples. In the process of model establishment and verification, a certain degree of accidental correlation is usually introduced, which affects the robustness of the model. In this paper, the possibility of accidental correlation in modeling method is analyzed based on the principle of algorithm, and the random number simulation spectral data and reference concentration are used to verify it. In this paper, the probability level of accidental correlation between different modeling methods in the process of modeling is investigated from the aspects of the selection of modeling wavelength number and the interactive verification method, and the optimal number of modeling wavelengths and the optimal interactive verification method are given. To reduce the introduction of accidental correlation. In the detection of blood sugar, the change of human body temperature and other physiological factors will also cause the change of near infrared spectrum information. In this paper, the influence of temperature on glucose concentration was studied by in vitro experiments, and how to reduce the accidental correlation of temperature in actual blood glucose detection was studied. The spectral overlap in the near infrared region is serious, which leads to the poor selectivity and sensitivity of the spectral information at some wavelengths, which directly affects the prediction accuracy of the model. In this paper, genetic algorithm is used to select the wavelength points of blood glucose spectrum to verify its applicability. The wavelength selected by genetic algorithm is mainly near the absorption peak of blood glucose, which is consistent with the physical expectation. The traditional genetic algorithm reduces the RMSEP value of PLS model by 11 points and the dynamic genetic algorithm by 16%. In this paper, the prediction accuracy of the calibration model is improved through the study of accidental correlation and wavelength selection, and it has certain value for noninvasive detection of blood glucose by near infrared spectroscopy (NIR).
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R318.51
【参考文献】
相关期刊论文 前10条
1 王宏,李庆波,刘则毅,徐可欣;遗传算法在近红外无创伤人体血糖浓度测量基础研究中的应用[J];分析化学;2002年07期
2 夏阿林;叶华俊;周新奇;王健;;基于粒子群算法的波长选择方法用于苹果酸度的近红外光谱分析[J];分析试验室;2010年09期
3 田地,金钦汉;近红外光谱仪器[J];分析仪器;2001年03期
4 丁亚平,苏庆德,吴庆生;化学蚁群算法与多组分导数荧光光谱解析[J];高等学校化学学报;2002年09期
5 高建波,胡鑫尧,胡东成;红外光谱统计波长选择方法用于废气检测[J];光谱学与光谱分析;2001年05期
6 黄岚,丁海曙,王广志;用近红外漫反射光谱无损检测血糖的初步研究[J];光谱学与光谱分析;2002年03期
7 刘蓉,陈文亮,徐可欣,邱庆军,崔厚欣;奇异点快速检测在牛奶成分近红外光谱测量中的应用[J];光谱学与光谱分析;2005年02期
8 郭亮;吉海彦;;蚁群算法在近红外光谱定量分析中的应用研究[J];光谱学与光谱分析;2007年09期
9 洪明坚;温志渝;;一种多模型融合的近红外波长选择算法[J];光谱学与光谱分析;2010年08期
10 何建平;金萍;;离散粒子群优化算法在硅钢涂层近红外光谱厚度检测中的应用研究[J];光谱学与光谱分析;2011年09期
相关博士学位论文 前5条
1 张洪艳;近红外光谱技术在人体血糖无创检测中的应用研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2005年
2 韩永辉;牛奶成分近红外测量的光学基础理论与实验研究[D];天津大学;2005年
3 刘蓉;近红外无创血糖测量—信号构成和拾取的理论及实验研究[D];天津大学;2006年
4 张震巍;我国糖尿病疾病负担研究[D];复旦大学;2007年
5 王江东;细胞因子IL-10及TNF-α基因多态性及其血清水平与2型糖尿病发病机理的研究[D];河北医科大学;2010年
相关硕士学位论文 前4条
1 陈露诗;中红外ATR光谱法血糖检测实验与数据处理[D];天津大学;2010年
2 李明;遗传算法的改进及其在优化问题中的应用研究[D];吉林大学;2004年
3 刘振尧;近红外光谱法进行多组分体系同时测定的研究[D];西南大学;2010年
4 曹道友;基于改进遗传算法的应用研究[D];安徽大学;2010年
,本文编号:2421157
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2421157.html