扬州地区中度以上听力障碍儿童的耳聋基因筛查及临床应用研究
本文选题:耳聋 + 基因芯片 ; 参考:《扬州大学》2012年硕士论文
【摘要】:耳聋,即指听力障碍或听力损失。是人们对声音大小和辨识度下降的表现。耳聋是导致交流障碍最常见的疾病,对日常生活的影响较重,常常因聋致哑,对患者无疑又是雪上加霜。研究发现耳聋的病因主要由遗传因素(60%)引起。而遗传性聋分为非综合征性耳聋(nonsyndromic hearing impairment,NSHI)和综合征性耳聋(syndromic hearing impairment,SHI)。综合症性耳聋临床表现形式多种多样,非综合症性耳聋以单一神经损害为主。非综合征性耳聋(NSHI)以听力损失为单一症状。NSHI具有高度遗传异质性,医学遗传专家估测可能有100多个基因位点与NSHI有关。按遗传方式可分为:常染色体隐性遗传约占70%,常染色体显性遗传约占22%,X连锁约占1%,线粒体突变母系遗传约占1%。基于人类基因组计划的完成,耳聋基因在遗传性耳聋中的研究也取得了突破性进展。我国聋病分子流行病学调查显示中国聋人群体中遗传性耳聋比例高,且GJB2、GJB3, SLC26A4、线粒体基因突变是造成中国人耳聋的主要遗传致病因素。运用基因芯片筛查技术对GJB2, GJB3.SLC26A4.mtDNA基因进行检测,不但可以诊断70%的遗传性耳聋患者的致聋原因,更为有再生育要求的耳聋夫妇生育听力正常儿提供理论依据和科学保障。耳聋的遗传咨询因此具有重大的意义,可以科学合理的指导耳聋夫妇的婚育,减少耳聋患儿的出生率,减轻国家和耳聋家庭的经济负担。基于上述,本研究首先对扬州地区中重度以上听力障碍儿童进行相关耳聋基因筛查,其次将基因筛查结果运用于临床,对有再生育要求的耳聋家庭进行遗传咨询,为其生育听力正常儿提供科学保障。 摘要 第一部分扬州地区中度以上听力障碍儿童的耳聋基因筛查研究 实验目的:应用耳聋基因芯片检测技术对扬州地区中度以上听力障碍儿童进行筛查,探讨遗传性耳聋基因在扬州地区的分布规律。 实验方法:以自愿为原则,经调查问卷研究及签署知情同意书后,对来自扬州市特殊教育学校的65名非综合症性耳聋学生(其中45名为先证者,设为实验组;其余20名无明显遗传性,设为对照组),进行全身体格检查及耳鼻喉专科检查,听力学测试等证实为非综合症型耳聋(听力下降为唯一临床症状),提取外周静脉血3ml,应用小剂量全血基因组DNA提取试剂盒提取DNA,后经基因聚合酶链(PCR)反应扩增检测基因,并杂交,洗片等,后应用晶芯“九项遗传性耳聋基因”检测试剂盒检测受试者4个耳聋相关基因上的9个热点,包括GJB2(35delG,176de116bp,235delC,299_300del AT). GJB3(538CT,547GA)、SLC26A4(IVS7-2AG,2168AG)和线粒体DNA12s rRNA (A1555G).使用晶芯Lux Scan TM10KB微阵列芯片扫描仪以90的激光扫描强度和532nm激光波长行芯片扫描以及相应的遗传性耳聋基因芯片检测判别系统进行信号读取和判断。 实验结果:检测人群中总阳性检出率(至少携带一个突变等位基因)研究组61.54%(40/65),其中:GJB2235delC纯和突变14例,235de1C杂和突变3例,235delC/299delAT复合杂合突变2例,176de116纯和突变1例,299delAT纯合突变2例,299delAT杂合突变1例,176del16/235delC杂合突变1例,GJB2突变阳性率占总突变的60.00%(24/40);SLC26A4ⅣS7-2AG纯和突变2例,SLC26A4ⅣS7-2AG杂和突变7例,SLC26A4ⅣS7-2AG/SLC26A42168AG复合杂合4例,SLC26A42168AG杂和2例,SLC26A4突变阳性率占总突变的37.50%(15/40);线粒体DNA12SrRNA A1555G均质1例,突变阳性率占总突变的2.50%(1/40);GJB3突变阳性率为0;5例未检出上述突变基因;对照组20例;均未检出突变基因。 实验结论:扬州地区遗传性耳聋具有较高的发病率,GJB2是主要的致聋基因,SLC26A4检出率高于全国平均水平。 第二部分基于基因诊断的聋病遗传咨询 实验目的:通过基因检测结果并结合有再生育要求的耳聋夫妇的基因筛查结果,预测其再生育耳聋患儿的风险。 实验方法:在知情同意的情况下,遵循保密等原则,通过调查问卷及首胎基因检测结果,应用耳聋基因芯片技术对有再生育要求的夫妇进行检测并进行遗传咨询。 实验结果:结合首胎患儿及其父母的基因筛查结果,该6对夫妇中;2对夫妇怀孕期间需行产前诊断:一对夫妇怀孕期间不需行产前诊断:3对夫妇怀孕期间不必行产前诊断。 实验结论:耳聋家族再生育聋儿概率高,其再生育前行耳聋基因检测可以预知胎儿患病风险。
[Abstract]:Refers to the deaf, hearing impairment or hearing loss. Is the sound drop size and recognition performance. The most common cause of deafness is a communication disorder effect on daily life is heavy, often because of dumb, the patient is undoubtedly one disaster after another. The study found that the disease mainly due to deafness by genetic factors (60%). Genetic deafness is divided into nonsyndromic deafness (nonsyndromic hearing, impairment, NSHI) and syndromic deafness (syndromic hearing, impairment, SHI). The clinical manifestations of deafness syndrome varied, non syndrome deafness in a single nerve damage. Non syndromic deafness (NSHI) hearing for the loss of single symptom.NSHI has a high degree of genetic heterogeneity, genetic medicine experts estimate that there may be more than 100 loci associated with NSHI. According to the mode of inheritance can be divided into: autosomal recessive autosomal accounted for about 70% Dominant accounted for 22%, accounting for about 1% of the X chain, mitochondrial mutations in maternally inherited accounts for about 1%. of the completion of the human genome project based on the study of deafness gene in genetic deafness also made a breakthrough. The investigation of deafness molecular epidemiology in China showed that China deaf genetic deafness in a high proportion, and GJB2. GJB3, SLC26A4, mitochondrial gene mutation is the main cause of genetic deafness Chinese pathogenic factors. Using gene chip screening technology of GJB2, GJB3.SLC26A4.mtDNA gene detection, not only can diagnose 70% of genetic deafness patients for deaf, more have fertility requirements of deaf couples with normal hearing children and the scientific basis for protection genetic counseling for deafness. It is therefore of great significance to the guidance of scientific and rational deaf couples of marriage, reduce the birth rate of deaf children, and reduce the state's deafness family Family economic burden. Based on the above, this study first in the Yangzhou area of moderate to severe hearing impaired children by screening the deafness gene, then the gene screening results in clinical use, to have fertility requirements of deaf families for genetic counseling, provide a scientific guarantee for the normal hearing children. Family
abstract
The first part of the hearing loss gene screening of children with moderate hearing impairment in the first part of Yangzhou
Objective: to detect the distribution of hereditary deafness gene in Yangzhou area by screening deafness gene chip technology for children with moderate hearing impairment in Yangzhou area.
Methods: the experiment voluntarily, through questionnaire research and signed informed consent, 65 non syndrome deafness students from Yangzhou City special education schools (including the proband, 45 for the experimental group; the remaining 20 were hereditary, as control group), body physique check and ENT specialist examination, audiological testing confirmed the non syndromic deafness (hearing loss as the only clinical symptoms), peripheral venous blood 3ml extraction, application of small dose of whole blood genomic DNA extraction kit to extract DNA by polymerase chain reaction (PCR) amplification and hybridization, gene detection, processing etc. after the application of geedom "detection of nine genetic deafness gene detection kit subjects 9 hot 4 deaf related genes, including GJB2 (35delG, 176de116bp, 235delC, 299_300del, AT). GJB3 (538CT, 547GA), SLC26A4 (IVS7-2AG, 2168AG) and Mitochondrial DNA12s rRNA (A1555G). The use of Lux Scan TM10KB chip microarray scanner for signal read and judge with 90 laser scanning intensity and laser wavelength scanning for 532nm chip and the corresponding genetic deafness gene chip detection system.
Results: the total positive rate of test group (carry at least one mutant allele) study group 61.54% (40/65), including: GJB2235delC homozygous mutation in 14 cases, 3 cases of 235de1C mutation, 235delC/299delAT compound heterozygous mutation in 2 cases, and 1 cases of pure 176de116 mutation, 299delAT homozygous mutation in 2 cases 299delAT, a heterozygous mutation in 1 cases, 176del16/235delC 1 cases with heterozygous mutation and GJB2 mutation positive rate of the total 60% mutations (24/40); SLC26A4 IV S7-2AG homozygous mutation in 2 cases, SLC26A4 IV S7-2AG mutation in 7 cases, 4 cases of SLC26A4 IV S7-2AG/SLC26A42168AG compound heterozygous, SLC26A42168AG heterozygous SLC26A4 mutation positive and 2 cases. The total rate of mutation in 37.50% (15/40); 1 cases of mitochondrial DNA12SrRNA A1555G mutation positive rate of homogeneous, total 2.50% mutations (1/40); GJB3 mutation positive rate was 0; 5 cases were not detected in the mutant gene; 20 patients in control group were not detected; gene mutation.
Experimental conclusion: the incidence of hereditary deafness in Yangzhou is high, and GJB2 is the main deafness gene, and the detection rate of SLC26A4 is higher than the national average.
The second part of genetic counseling based on genetic diagnosis of deafness
Objective: to predict the risk of deafness in children with deafness through gene screening and genetic screening of deaf couples with reproductive requirements.
The experimental method: following the informed consent, we should follow the principles of confidentiality and so on. Through the questionnaire and first birth gene detection results, we used deafness gene chip technology to detect couples with reproductive requirements and conduct genetic counseling.
Experimental results: combined with the first child and their parents' genetic screening results, the 6 couples, 2 couples need prenatal diagnosis during pregnancy: one couple does not need prenatal diagnosis during pregnancy: 3 couples do not need prenatal diagnosis during pregnancy.
Conclusion: deafness family re birth of deaf children with high probability, the re birth before genetic testing can predict fetal risk.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R764.43
【参考文献】
相关期刊论文 前10条
1 孔维佳;耳聋相关分子生物学研究[J];中国耳鼻咽喉头颈外科;2004年01期
2 王秋菊;韩东一;郭玉芬;李庆忠;袁虎;赵亚丽;兰兰;关静;徐百成;郭维维;纵亮;韩明鲲;王大勇;陈之慧;刘穹;杨伟炎;沈岩;;遗传性耳聋资源收集保存及基因定位克隆[J];中国耳鼻咽喉头颈外科;2006年10期
3 李丽;何健;郭玉芬;兰兰;袁逸铭;刘亚珍;张虹;丁海娜;满荣军;历建强;杨菊兰;王大勇;郭晖;王秋菊;;1234例新生儿听力与聋病易感基因联合筛查[J];中国耳鼻咽喉头颈外科;2009年04期
4 周艾;方如平;戴朴;李琦;;儿童耳聋家庭GJB2、SLC26A4和mtDNA基因型检测及产前咨询[J];郑州大学学报(医学版);2011年03期
5 陈金霞;张桂茹;张明辉;;COCH基因与DFNA9的相关性研究[J];吉林医学;2007年02期
6 袁永一;黄德亮;戴朴;朱秀辉;于飞;张昕;刘丽贤;韩东一;;赤峰市特教学校耳聋患者GJB2和GJB3及GJB6基因突变分析[J];临床耳鼻咽喉头颈外科杂志;2008年01期
7 门美超;薛晋杰;蒋璐;王鸿涵;潘乾;冯永;;一种新的高效快速检测遗传性耳聋的方法(英文)[J];中南大学学报(医学版);2011年11期
8 戴朴;遗传性耳聋的分子诊断和遗传咨询[J];实用医学杂志;2005年02期
9 李庆忠,王秋菊,赵立东,袁虎,李丽娜,刘穹,韩东一;国人非综合征型遗传性聋患者GJB3基因突变分析[J];听力学及言语疾病杂志;2005年03期
10 孙喜斌;李兴启;张华;;中国第二次残疾人抽样调查听力残疾标准介绍[J];听力学及言语疾病杂志;2006年06期
,本文编号:1754403
本文链接:https://www.wllwen.com/yixuelunwen/wuguanyixuelunwen/1754403.html