当前位置:主页 > 医学论文 > 五官科论文 >

不同频率间歇低氧下大鼠肝脏损伤机制及抗氧化剂Tempol的干预作用

发布时间:2018-06-01 19:10

  本文选题:睡眠呼吸暂停 + 间歇低氧 ; 参考:《天津医科大学》2012年硕士论文


【摘要】:研究背景与目的 阻塞性睡眠呼吸暂停综合征(Obstructive sleep apnea syndrome, OSAS)是以睡眠状态下反复出现的呼吸暂停和血氧饱和度下降为特征,即慢性间歇低氧(Chronic intermittent hypoxia, CIH), CIH是OSAS造成机体损害的主要病理生理学基础。OSAS是一种氧化应激性疾病,同时也是一种炎症性疾病。目前研究认为,OSAS模式的CIH会导致肝脏细胞呈现氧化应激状态进而激活NF-κB及其介导的炎性通路引起一系列炎症介质的变化,最终导致肝脏损害,引起非酒精性脂肪性肝病(Nonalcoholic fatty liver disease, NAFLD),甚至非酒精性脂肪性肝炎(Nonalcoholic steatohepatitis, NASH)。为此,本研究模拟OSAS建立CIH大鼠模型,观察不同频率CIH下大鼠肝脏损伤情况和可能机制及抗氧化剂Tempol的干预作用,以便为临床上预防和治疗OSAS器官合并症提供探索和理论依据。 内容 1.不同频率间歇低氧下大鼠肝脏氧化应激和炎症反应的研究 2.抗氧化剂Tempol对CIH下大鼠肝脏损伤的干预作用 方法 通过向计算机控制的低氧舱中,循环充入不同时间的纯氮气和正常氧浓度的压缩空气,分别造成不同频率的间歇低氧(10次/h、20次/h、30次/h、40次/h)及持续常氧环境。将72只雄性成年Wistar大鼠随机分为间歇低氧组(IH1、IH2、IH3、IH4,频率依次为10、20、30、40次/h);Tempol干预组:30T1组(30次/h间歇低氧暴露开始第1天即给予Tempol干预,Tempol剂量为:100mg×kg-1×d+生理盐水稀释后腹腔注射,稀释比例为Tempol:生理盐水=1:10,即1ml10%Tempol/Kg体重),30T2组(30次/h间歇低氧暴露第29天开始给予Tempol干预,Tempol剂量同30T1组),生理盐水对照组:30N1组(30次/h间歇低氧暴露开始第1天即给予等体积生理盐水做对照,即1ml0.9%NS/Kg体重),30N2组(30次/h间歇低氧暴露第29天开始给予等体积生理盐水做对照),以及常氧对照组(NC组),共9组,每组8只大鼠,间歇低氧暴露环境最低氧浓度均为5%,常氧对照组始终维持21%的氧浓度。Tempol和生理盐水均于大鼠每天进入低氧舱前半小时腹腔注射,每天1次。暴露6周结束后,各组大鼠均麻醉后股动脉放血处死取出肝脏。肝脏石蜡切片HE染色观察肝细胞形态变化,化学法测定肝脏匀浆中SOD、T-AOC的活性,ELISA法测定MDA、GSH-PX、NF-κB、 ICAM-1的水平。 结果 第一部分 1.肝脏组织病理:NC组未见明显肝脏损害,不同频率IH组均有部分肝组织细胞胞浆稀疏,核深染,随着低氧频率的升高肝脏出现细胞水肿,甚至少量炎性细胞浸润。表明慢性间歇低氧可以导致大鼠肝脏损害的发生 2.不同频率间歇低氧组和常氧对照组大鼠肝脏MDA、SOD、GSH-PX、T-AOC水平比较:不同频率IH组MDA水平均高于NC组(P均0.05),SOD、 GSH-PX、T-AOC活性均低于NC组(P均0.05);除IH3组与IH4组比较以上指标均无显著差异外(P分别为0.552,0.700,0.737,0.947),其余IH组两两比较以上指标差异均有统计学意义(P均0.05),且随着低氧频率的升高,MDA水平逐渐升高,SOD、GSH-PX、T-AOC活性逐渐下降。 3.不同频率间歇低氧组和常氧对照组大鼠肝脏NF-κB、ICAM-1水平比较:除IH1组与NC组比较NF-κB、ICAM-1水平差异无统计学意义外(P分别为0.143,0.633),其余IH组NF-κB、ICAM-1水平均高于NC组(P均0.05);除IH3组与IH4组比较NF-κB水平及IH1组和IH2组、IH3组和IH4组比较ICAM-1水平差异无统计学意义外(P分别为0.103,0.06,0.524),其余IH组两两比较NF-κB ICAM-1水平差异均有统计学意义(P均0.05),且随着低氧频率的升高,NF-κB、ICAM-1水平也逐渐升高。 4.双变量相关分析法显示:MDA与SOD、GSH-PX、T-AOC均呈负相关关系(r分别为-0.721,-0.713,-0.653,P均为0.000),NF-κB与MDA、GSH-PX分别呈正相关(r=0.789,P=0.000)、负相关(r=-0.766,P=0.000)关系,NF-κB与ICAM-1呈正相关关系(r=0.667,P=0.000)。 第二部分 1.肝脏组织病理:30T1组、NC组未见明显肝脏损害,30T2组可见轻微肝细胞胞膜破坏,胞浆稀疏,IH3组、30N1组、30N2组可见肝细胞胞膜破坏,细胞水肿,胞浆稀疏,核深染。表明Tempol可以预防慢性间歇低氧下大鼠肝脏损伤的发生,且干预越早,作用越明显。 2. Tempol干预组、生理盐水对照组和常氧对照组大鼠肝脏MDA、SOD、GSH-PX、T-AOC水平比较:30T1组、30T2组较IH3组、30N1组、30N2组MDA水平均下降(P均0.05),SOD、GSH-PX、T-AOC活性均升高(P均0.05);且30T1组与NC组比较以上指标均无显著差异(P分别为0.209,0.117,0.222,0.413);但30T1组和30T2组比较以及30T2组和NC组比较以上指标差异均有统计学意义(P均0.05);IH3组、30N1组、30N2组两两比较以上指标差异均无统计学意义(P均0.05)。 3. Tempol干预组、生理盐水对照组和常氧对照组大鼠肝脏NF-κB、ICAM-1水平比较:30T1组、30T2组较IH3组、30N1组、30N2组NF-κB、ICAM-1水平均下降(P均0.05);30T1组、30T2组、NC组两两比较NF-κB、ICAM-1水平差异均有统计学意义(P均0.05),IH3组、30N1组、30N2组两两比较上述指标差异均无统计学意义(P均0.05)。 结论 1.不同频率CIH通过氧化应激和炎症反应共同造成大鼠肝脏损害,且随着间歇低氧频率的增加肝脏损伤也逐渐加重,但并不是频率越高,肝脏损伤越重,即肝脏损伤程度与CIH频率并不完全呈线性关系。 2.CIH过程中产生的ROS的蓄积进而引起的氧化应激反应可能作为始动因素进而激活氧化还原敏感转录因子NF-κB及其介导的炎症通路,影响炎症介质的释放,二者共同造成CIH下大鼠肝脏损伤的发生 3.抗氧化剂Tempol可以干预CIH所导致的氧化应激反应的发生,进而抑制NF-κB的激活,预防和缓解CIH肝损害,但尚不能完全逆转既存的肝损害。
[Abstract]:Research background and purpose
Obstructive sleep apnea syndrome (OSAS) is characterized by recurrent apnea and decreased oxygen saturation in the state of sleep, namely, chronic intermittent hypoxia (Chronic intermittent hypoxia, CIH), CIH is the main pathophysiological basis for OSAS to cause damage to the body, and.OSAS is a kind of oxidative stress. OSAS model CIH can cause oxidative stress in liver cells and activate NF- kappa B and its mediated inflammatory pathway to cause a series of inflammatory mediators, resulting in liver damage and non alcoholic fatty liver disease (Nonalcoholic fatty liver diseas). E, NAFLD), even nonalcoholic steatohepatitis (Nonalcoholic steatohepatitis, NASH). To this end, this study simulated OSAS to establish a CIH rat model to observe the liver damage and possible mechanism under the different frequencies of CIH and the possible mechanism of the antioxidant Tempol, so as to provide exploration and treatment for the clinical prevention and treatment of OSAS organ complication. On the basis.
content
1. oxidative stress and inflammatory response in rats liver under intermittent hypoxia with different frequencies
2. intervention effect of antioxidant Tempol on liver injury induced by CIH in rats
Method
In a computer controlled hypoxic chamber, the cycle was filled with compressed air of pure nitrogen and normal oxygen concentration at different times, resulting in intermittent hypoxia at different frequencies (10 /h, 20 times /h, 30 /h, 40 /h) and continuous constant oxygen environment. 72 male adult Wistar rats were divided into intermittent hypoxia group (IH1, IH2, IH3, IH4, and the frequency was 10,2). 0,30,40 /h); Tempol intervention group: 30T1 group (30 times /h intermittent hypoxia exposure began to give Tempol intervention, Tempol dose was: 100mg * kg-1 x d+ saline diluted peritoneal injection, dilution ratio was Tempol: physiological saline =1:10, namely weight). Pre, Tempol dose and 30T1 group), saline control group: group 30N1 (first days of 30 /h intermittent hypoxia exposure, i. e. 1ml0.9%NS/Kg weight), 30N2 group (30 times of /h intermittent hypoxia exposure to equal volume of normal saline as control), and normal oxygen control group (NC group), a total of 9 groups, 8 rats in each group. The lowest oxygen concentration in the intermittent hypoxic environment was 5%, and the oxygen concentration of 21% in the normal oxygen control group was always maintained at.Tempol and the normal saline was intraperitoneally injected into the abdominal cavity for 1 times a day before the hypoxic capsule was entered. After 6 weeks of exposure, the rats in each group were killed and removed from the liver after the anaesthesia. The liver paraffin section HE staining was used to observe the liver fine. Cell morphology changes, the activity of SOD and T-AOC in liver homogenate were measured by chemical method, and the levels of MDA, GSH-PX, NF- B and ICAM-1 were measured by ELISA.
Result
Part one
1. liver histopathology: no obvious liver damage was found in group NC. There were some liver tissue cells with sparse cytoplasm and deep staining in IH groups at different frequencies. The liver edema and even a small amount of inflammatory cell infiltration were found in the liver with the increase of hypoxia frequency.
2. the levels of MDA, SOD, GSH-PX and T-AOC in the liver of rats with different frequencies of intermittent hypoxia group and normal oxygen control group were compared: MDA level in IH group at different frequencies was higher than that in group NC (P 0.05), SOD, GSH-PX, T-AOC activity were lower than that of NC group (0.05). 22 compared with the above indicators, the differences were statistically significant (P = 0.05), and with the increase of hypoxia frequency, MDA levels gradually increased, while SOD, GSH-PX and T-AOC activities gradually decreased.
3. the levels of NF- kappa B and ICAM-1 in the liver of rats with different frequencies of intermittent hypoxia group and normoxic control group were compared: there was no significant difference in ICAM-1 level between IH1 and NC groups (P respectively 0.143,0.633), and the level of NF- kappa of the rest IH group was higher than that of the group (all 0.05). Compared with group IH4, the difference of ICAM-1 level was not statistically significant (P was 0.103,0.06,0.524, respectively), and the difference of NF- kappa B ICAM-1 level in the other IH group 22 was statistically significant (P 0.05), and as the frequency of hypoxia increased, NF- kappa B, ICAM-1 level also increased gradually.
4. the bivariate correlation analysis showed that MDA had a negative correlation with SOD, GSH-PX and T-AOC (r was -0.721, -0.713, -0.653, P 0 respectively), and NF- kappa B was positively correlated with MDA.
The second part
1. liver histopathology: group 30T1, group NC had no obvious liver damage, group 30T2 showed slight hepatocyte membrane damage, cytoplasm sparsely, IH3, 30N1, 30N2 group, cell membrane destruction, cell edema, cytoplasm sparsity, deep nucleus staining, indicating that Tempol can prevent the occurrence of liver injury in rats with chronic intermittent hypoxia, and the earlier the intervention, the more effective the intervention, the more effective the action, the more effective. Obviously.
In 2. Tempol intervention group, the liver MDA, SOD, GSH-PX, T-AOC levels were compared in the normal saline control group and the normal oxygen control group: 30T1 group, 30T2 group was lower than IH3 group, 30N1 group, 30N2 group MDA level (P are 0.05). 2,0.413), but compared with group 30T1 and group 30T2, and compared with group 30T2 and NC group, there were significant differences (P 0.05), and there was no significant difference in the above indexes in IH3 group, 30N1 group and 30N2 group 22 (P 0.05).
3. Tempol intervention group, normal saline control group and normal oxygen control group rats liver NF- kappa B, ICAM-1 level compared: 30T1 group, 30T2 group IH3 group, 30N1 group, 30N2 group NF- kappa B, ICAM-1 levels were all decreased (0.05), 22 groups, 22 groups, differences were statistically significant (0.05), group, group, 22 group There was no significant difference between the above indexes (P 0.05).
conclusion
1. the liver damage in rats was caused by oxidative stress and inflammatory response at different frequencies of CIH, and the liver damage increased with the increase of intermittent hypoxia frequency, but the higher the frequency, the heavier the liver injury, that is, the degree of liver injury was not completely linear with the frequency of CIH.
The oxidative stress induced by the accumulation of ROS in the 2.CIH process may act as a starting factor to activate the redox sensitive transcription factor NF- kappa B and its mediated inflammatory pathway, which affects the release of the inflammatory mediators, and the two causes the liver injury in the rat under CIH.
3. antioxidant Tempol can interfere with the occurrence of oxidative stress caused by CIH, inhibit the activation of NF- kappa B and prevent and alleviate the liver damage of CIH, but it can not completely reverse the existing liver damage.
【学位授予单位】:天津医科大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R766

【相似文献】

相关期刊论文 前10条

1 李立,李春满,李晓延,胡明道,冉江华,黄明,张炳彦;自制KYL液和UW液保存大鼠肝脏效果的比较[J];中国普外基础与临床杂志;2005年04期

2 石如玲,姜玲玲;胆汁酸对大鼠肝脏过氧化物酶体增殖剂激活受体αmRNA表达的影响[J];河北医科大学学报;2005年05期

3 杨少军,郑昱,马岚;疏肝化脂胶囊对脂肪肝大鼠肝脏形态学的影响[J];中国中医药信息杂志;2005年10期

4 陈龙;王莎莎;周娟;江善祥;;慢性镉接触大鼠免疫细胞活性和免疫介质变化探讨[J];毒理学杂志;2006年02期

5 马红霞;程培英;;乐果急性、亚急性暴露对大鼠胆碱酯酶及细胞色素氧化酶影响的研究[J];吉林农业大学学报;2006年06期

6 宋育林;曾民德;陆伦根;范竹萍;茅益民;;非酒精性脂肪性肝病大鼠PPARα的表达及其意义[J];安徽医学;2008年01期

7 彭霞;袁松华;冯艳玲;贾小芳;杨华;张丽军;;复方鳖甲软肝片治疗免疫性肝纤维化大鼠肝细胞质膜蛋白质组分的变化[J];实用肝脏病杂志;2009年06期

8 姜辉;高家荣;张家富;张睿;;肝乐颗粒对肝纤维化大鼠肝组织α-平滑肌肌动蛋白表达的影响[J];中国中医药信息杂志;2010年S1期

9 吴静;郑浩;江瑛;苏文;侯金佟;张华;;非酒精性脂肪性肝炎大鼠肝脏血管内皮生长因子表达的意义[J];中国比较医学杂志;2010年08期

10 何瑶;熊理守;黄文生;杨荣萍;陈瑜君;任明;;间充质干细胞在肝纤维化形成中的作用[J];中国病理生理杂志;2010年08期

相关会议论文 前10条

1 宋春娟;俞健;张健东;刘树业;俞新大;;大鼠肝脏F蛋白cDNA的克隆及序列分析[A];中国的遗传学研究——中国遗传学会第七次代表大会暨学术讨论会论文摘要汇编[C];2003年

2 李卉;周康荣;纪元;管生;赵卫东;张利军;陈财忠;;肝脏退变结节MR诊断的初步实验研究[A];2006年华东六省一市暨浙江省放射学学术年会论文汇编[C];2006年

3 田建广;夏照帆;王光毅;唐洪泰;朱世辉;;缺血对大鼠肝脏胞内钠离子和磷酸化合物的影响[A];中华医学会第六届全国烧伤外科学术会议论文汇编[C];2001年

4 周雍;吴越;叶煦亭;杨志峰;郑尊;;急性镉中毒大鼠肝脏氧自由基的细胞化学定位研究[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年

5 杨能红;汪荣珊;李兴;韩防;潘卫;;双向凝胶电泳分析糖尿病大鼠肝脏蛋白质表达[A];2007年贵州省医学会外科分会学术年会论文汇编[C];2007年

6 于志深;李珏声;刘菱芬;安瑛玉;陈学存;穆乃强;;营养与肝脏的关系及营养性肝损害防治的研究 Ⅳ.自由与限量进食玉米饲料对S~(35)-蛋氨酸进入大鼠肝脏的影响[A];中国生理科学会学术会议论文摘要汇编(营养)[C];1964年

7 薛承锐;费乃昕;张玉萍;马涛;;重症急性胰腺炎大鼠肝脏核因子—κB的表达及药物的干预作用的机制研究[A];第六次全国中西医结合血瘀证及活血化瘀研究学术大会论文汇编[C];2005年

8 蔡金华;冯敢生;;磁标记间充质干细胞肝脏移植的MRI活体示踪[A];中国医师协会放射医师分会首届会员大会暨第四届医学影像山东论坛、山东省第16次放射学会议暨山东省第14届医学影像学学术研讨会论文集[C];2007年

9 王倩;张国倩;杜津;孙丽莎;李昕;;硫化氢预处理影响缺血再灌注大鼠肝脏氧自由基的检测[A];中华医学会第九次全国检验医学学术会议暨中国医院协会临床检验管理专业委员会第六届全国临床检验实验室管理学术会议论文汇编[C];2011年

10 冯志杰;姚希贤;王弘刚;;L—精氨酸对离体灌流大鼠肝脏肝内血管阻力的调节作用[A];中国中西医结合学会第十二次全国消化系统疾病学术研讨会论文汇编[C];2000年

相关重要报纸文章 前9条

1 陶春祥;丹参抗肝病作用研究[N];农村医药报(汉);2003年

2 陶春祥;丹参抗肝病作用研究[N];中国中医药报;2003年

3 衣晓峰 陈英云;原发性肝无功能研究出成果[N];中国医药报;2004年

4 记者衣晓峰 通讯员岳金凤;树莓可抑制肝癌细胞生长[N];健康报;2009年

5 勇汇;甘草甜素药用新发现[N];上海中医药报;2000年

6 衣晓峰 岳金凤 记者 李丽云;我学者证实树莓可抑制肝癌细胞生长[N];科技日报;2009年

7 程克铭;浅谈冬虫夏草的临床应用[N];民族医药报;2004年

8 廖定国;交感神经可调控肝脏功能[N];健康报;2001年

9 新讯;上海首次提出肝脏热缺血耐受极限为45分钟[N];医药经济报;2001年

相关博士学位论文 前10条

1 王石;吸烟相关剂量镉致大鼠肝脏损伤的蛋白质组学研究[D];吉林大学;2010年

2 俞晓军;失血性休克大鼠肝脏差异基因的筛查及EPHX2基因表达的初步研究[D];第二军医大学;2011年

3 许惠仙;草苁蓉环烯醚萜苷对大鼠肝脏癌前病变保护机制的实验研究[D];延边大学;2012年

4 戴小明;匹立尼酸(Wy-14643)对大鼠移植肝冷保存再灌注损伤保护作用的实验研究[D];中南大学;2007年

5 彭磷基;扶正抗癌方、维生素C及两者联用防治肝癌作用的比较研究[D];暨南大学;2009年

6 刘现立;生长激素对梗阻性黄疸大鼠肝脏及胃肠道损害的保护作用[D];吉林大学;2006年

7 向阳;不同预处理对大鼠肝移植供肝保护作用的探讨[D];复旦大学;2005年

8 谢英慧;大鼠肝脏癌变过程中环氧化酶2表达与肿瘤血管生成关系的实验研究[D];山东大学;2005年

9 郭金英;红葡萄酒对心血管系统的保护作用研究[D];西北农林科技大学;2006年

10 汤黎明;腺苷A_(2A)受体对大鼠小体积肝移植缺血再灌注损伤的保护作用及其机制研究[D];南京医科大学;2007年

相关硕士学位论文 前10条

1 姜秋芳;不同频率间歇低氧下大鼠肝脏损伤机制及抗氧化剂Tempol的干预作用[D];天津医科大学;2012年

2 冯爱娟;大鼠肝细胞L-FABP、FATP4在NAFL形成中的作用[D];第三军医大学;2004年

3 刘旭华;大鼠慢加急性肝衰竭模型的建立及其病理机制初步研究[D];首都医科大学;2007年

4 尹昌生;移植胰岛血管内皮细胞GIPR表达的实验研究[D];重庆医科大学;2007年

5 何芳;甘油二酯食用油对大鼠非酒精性脂肪肝预防作用的研究[D];第二军医大学;2007年

6 马建敏;皮质酮对大鼠早期再生肝抗酶mRNA及蛋白表达的影响[D];河南师范大学;2008年

7 栗彦琪;褪黑素对大鼠肝移植缺血再灌注损伤保护机制的实验研究[D];山西医科大学;2008年

8 纪志鹏;共刺激分子B7-1,B7-2在大鼠热缺血再灌注肝脏表达的实验研究[D];山东大学;2006年

9 王强;不同治法方药对大鼠脂肪肝kupffer细胞ERK1/2蛋白活性的影响[D];暨南大学;2006年

10 陈慰填;健脾补肾法治疗少精子症的临床及动物实验研究[D];广州中医药大学;2008年



本文编号:1965313

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/wuguanyixuelunwen/1965313.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a21cb***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com