当前位置:主页 > 医学论文 > 五官科论文 >

视网膜血管识别技术研究与算法实现

发布时间:2018-09-03 11:37
【摘要】:随着电子商务、手机支付和在线购物等线上交易模式的发展,人们对于虚拟数据的安全性的要求越来越高,传统的在线身份识别技术,如账号密码已不能满足安全性的需求,而生物识别技术得益于其可靠性、难伪造性开始逐渐被应用到手机、电脑等民用电子终端设备的身份认证和支付系统中。在众多生物特征之中,视网膜是最可靠、最稳定以及最难被伪造的生物特征之一,因此它非常适合作为身份认证的标识。在可预见的未来,视网膜识别技术有很大的希望被应用到在线支付、访问权限控制、自动取款等对安全性需求高的民用领域。所以对于视网膜识别技术的研究有着极大的价值和良好的前景。本文深入研究了大量与视网膜和生物识别相关国内外论文,特别是在视网膜图像的血管分割、特征提取以及特征匹配方面。然后对这些论文提及的相关算法的进行挑选、整合和改进,设计了一套准确稳定的视网膜识别方案。本文的主要工作和成果如下:(1)在视网膜图像分割阶段,研究了多种血管分割的算法,并加以对比。结合视网膜血管的特征,最后采用高斯滤波对视网膜血管进行增强,并使用最大二维熵阈值算法进行血管分割。通过实验检验,该方法对血管分割的效果要优于其他常用的边缘分割算法并具有良好的抗噪性。(2)在特征点提取阶段,根据对视网膜血管的研究,选用血管的分叉点作为特征点,并利用形态学的知识对图像做了细化处理。然后对Harris角点特征提取算法和邻域特征提取算法作了详细的分析,并将它们的提取结果标注出来进行对比,确认领域特征提取为最优的针对细化图的提取方式。除此之外,还对利用二次特征提取来进一步排除伪特征点,增加了有效点的比例,提高了提取的准确度。(3)在特征点匹配阶段,研究和对比了几种常用的特征匹配方法,从稳定性、准确度和效率等多个方面衡量了它们的优缺点。通过分析和比较,最终设计出了一种融合算法,将三角形匹配算法和二维聚类算法结合起来,充分利用了两者各自的优点,使匹配算法同时具备稳定性和效率。除此之外还对模板三角形的选取方法和相似三角形检索算法进了一定的改进,提升了匹配的效率。
[Abstract]:With the development of electronic commerce, mobile phone payment and online shopping, people are demanding more and more security of virtual data. Traditional online identification technology, such as account password, can no longer meet the need of security. Because of its reliability, biometric technology has been gradually applied to the identification and payment systems of mobile phones, computers and other civil electronic terminal devices. Among the many biometric features, retina is one of the most reliable, stable and difficult to be forged, so it is very suitable for identity identification. In the foreseeable future, retinal recognition technology has great hope to be applied to online payment, access control, automatic withdrawal and other civilian areas with high security requirements. Therefore, the research of retinal recognition technology has great value and good prospects. In this paper, a large number of papers related to retina and biometrics have been deeply studied, especially in vascular segmentation, feature extraction and feature matching of retinal images. Then we select, integrate and improve the relevant algorithms mentioned in these papers, and design a set of accurate and stable retinal recognition scheme. The main work and achievements are as follows: (1) in the phase of retinal image segmentation, a variety of blood vessel segmentation algorithms are studied and compared. According to the characteristics of retinal vessels, Gao Si filter is used to enhance retinal vessels and the maximum two-dimensional entropy threshold algorithm is used to segment the retinal vessels. The experimental results show that this method is superior to other commonly used edge segmentation algorithms and has good noise resistance. (2) in the phase of feature point extraction, according to the research of retinal vessels, the bifurcation points of blood vessels are selected as feature points. The image is thinned by morphological knowledge. Then, the Harris corner feature extraction algorithm and the neighborhood feature extraction algorithm are analyzed in detail, and their extraction results are compared to confirm that the domain feature extraction is the best extraction method for thinning image. In addition, we use quadratic feature extraction to further eliminate pseudo-feature points, increase the proportion of effective points, and improve the accuracy of extraction. (3) in the phase of feature point matching, several common feature matching methods are studied and compared. Their advantages and disadvantages are measured in terms of stability, accuracy and efficiency. Through analysis and comparison, a fusion algorithm is designed, which combines triangle matching algorithm and two-dimensional clustering algorithm, and makes full use of their respective advantages, so that the matching algorithm has the stability and efficiency at the same time. In addition, the selection method of template triangle and the similar triangle retrieval algorithm are improved to improve the efficiency of matching.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R770.4;TP391.41

【参考文献】

相关期刊论文 前10条

1 赵晓芳;林土胜;;基于结构特征的视网膜血管形态识别[J];计算机工程与设计;2012年03期

2 王耀贵;;图像高斯平滑滤波分析[J];计算机与信息技术;2008年08期

3 李旭超;朱善安;;图像分割中的马尔可夫随机场方法综述[J];中国图象图形学报;2007年05期

4 陈波;赖剑煌;;用于图像分割的活动轮廓模型综述[J];中国图象图形学报;2007年01期

5 张鸣华;;一种聚类方法的分析[J];三明学院学报;2006年02期

6 闫成新;桑农;张天序;;基于图论的图像分割研究进展[J];计算机工程与应用;2006年05期

7 杨强,谭礼俊;生物识别技术对比浅析[J];大众科技;2005年02期

8 陈光新;自动指纹识别技术及其应用[J];江苏船舶;2004年03期

9 冯国进,顾国华,张保民;指纹图像预处理与特征提取[J];计算机应用研究;2004年05期

10 朱珍,王景艳;生物识别技术与应用[J];佛山科学技术学院学报(自然科学版);2003年03期

相关硕士学位论文 前3条

1 渠海龙;虹膜识别技术及其在身份认证中的应用[D];大连理工大学;2012年

2 张凯;抗任意旋转与尺度变化的图像匹配方法研究[D];中南大学;2008年

3 王君;电子商务网络支付安全体系研究[D];贵州大学;2007年



本文编号:2219868

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/wuguanyixuelunwen/2219868.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ec3db***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com