非酒精性脂肪肝筛查模型与风险评估模型研究
[Abstract]:Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by excessive intracellular fat deposition excluding alcohol and other specific liver damage factors. It is an acquired metabolic stress liver injury closely related to insulin resistance and genetic susceptibility. The morbidity and morbidity of NAFLD are increasing constantly, and the risk factors of serious chronic diseases, such as cardiovascular disease, metabolic syndrome, chronic kidney disease and so on, have attracted wide attention of researchers. Among them, early screening and early diagnosis of NAFLD are particularly important. Using cross-sectional data and cohort data, a three-year risk assessment model and a logistic regression model for NAFLD screening and a three-year risk assessment model for NAFLD screening were constructed using Cox proportional hazard model. Among them, 1 030 males and 3 811 females were detected with NAFLD, the detection rate was 38.00%; 8 590 females and 1 898 females were detected with NAFLD, the detection rate was 22.10%. The detection rate of NAFLD in males was higher than that in females (2 = 550.27, P 0.001). The detection rate of NAFLD in males and females increased with age, showing an upward trend. In NAFLD patients and non-NAFLD patients, except age, the differences of all the indicators between the two groups were statistically significant (P 0.05); while in women, the differences of all the indicators between the two groups were statistically significant (P 0.05). 3. Multivariate logistic regression (regression) was used to screen variables and model. Finally, both men and women entered the model. Nine indexes were identical, including age, body mass index, diastolic blood pressure, glutamic-alanine aminotransferase, glutamyl transpeptidase, fasting blood glucose, triglyceride, high density lipoprotein and low density lipoprotein. The ROC curve area under AUC (95% CI) was 0.800 (0.792,0.807) and 0.844 (0.836,0.852) for men and women, respectively. The internal evaluation of the screening model was carried out by 10-fold cross-validation. AUC (95% CI) for men and women were 0.798 (0.790,0.807) and 0.843 (0.833,0.852). AUC (95% CI) for men and women were 0.845 (0.832,0.858) and 0.854 (0.854, respectively). NAFLD risk assessment model cohort of 3 429 people, 1 847 men, 683 in the follow-up period (4 514 person-years) NAFLD incidence density of 15.13/100 person-years, 1582 women, 431 in the follow-up period (4 142 person-years) NAFLD incidence density of 10.14/100 person-years. Comparing the patients with NAFLD with those without NAFLD, the difference of each index between male and female groups was statistically significant (P 0.05); the difference of other indexes between the two groups except the absolute value of monocytes was statistically significant (P 0.05). 3. Finally, men entered the model with six indicators, including body mass index, diastolic blood pressure, alanine aminotransferase, triglyceride, high-density lipoprotein and low-density lipoprotein. Women's indicators included age, body mass index, diastolic blood pressure, triglyceride, high-density lipoprotein and low-density lipoprotein. AUC (95% CI) was 0.724 (0.703, 0.744) and 0.773 (0.751, 0.793) for men and women, respectively. The risk assessment model was evaluated internally by 10-fold cross-validation. AUC (95% CI) for men and women were 0.718 (0.695, 0.742) and 0.766 (0.740, 0.791), respectively. 765) and 0.712 (0.654, 0.770). Conclusion: 1. The detection rate of NAFLD in males is higher than that in females. 2. The NAFLD screening models of males and females can distinguish NAFLD patients and non-patients well, and have extrapolation. 3. The three-year NAFLD risk assessment model of males and females constructed in this study has good predictive effect and has certain extrapolation. Push sex.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R575.5
【相似文献】
相关期刊论文 前4条
1 梁伟璋;黄启涛;钟梅;陈敦金;余艳红;汪丽萍;钟柳英;行李琳;罗漫灵;李佳;陈茜;;两种风险评估模型在孕产妇下肢深静脉血栓形成中预测价值的比较[J];现代妇产科进展;2014年08期
2 马贵平,史喜菊;化妆品传播疯牛病风险评估模型的建立[J];检验检疫科学;2005年06期
3 孙樨陵;谈立峰;郝东平;严旭东;蔡军;;区域性大型活动餐饮安全风险评估指标及模型的建立[J];中国食品卫生杂志;2012年03期
4 厉小燕;陈坤;张美辨;邹华;周莉芳;;国际采矿与金属委员会职业健康风险评估模型在火力发电厂的应用研究[J];浙江预防医学;2013年11期
相关会议论文 前8条
1 海然;谢小权;;基于多要素融合的风险评估模型的设计[A];全国计算机安全学术交流会论文集(第二十二卷)[C];2007年
2 薛晔;黄崇福;;自然灾害风险评估模型的研究进展[A];中国灾害防御协会风险分析专业委员会第二届年会论文集(二)[C];2006年
3 高峰;党亚茹;高洁;;三峡库区船舶散装化学品风险评估模型及其应用[A];中国航海学会2007年度学术交流会优秀论文集[C];2007年
4 高峰;党亚茹;高洁;;三峡库区船舶散装化学品风险评估模型及其应用[A];2007年船舶防污染学术年会论文集[C];2007年
5 丁移粟;王宇;;基于证据理论的涉密人员风险评估模型研究[A];2012年全国网络与数字内容安全学术年会论文集[C];2012年
6 陈佑平;张真路;李梦雅;;心脑血管病自动化风险评估系统的建立及其初步应用效果分析[A];第十二届全国脂质与脂蛋白学术会议论文汇编[C];2014年
7 李金安;冯爱芬;;重大动物疫情潜在风险的评估模型[A];中国畜牧兽医学会2009学术年会论文集(下册)[C];2009年
8 宫会丽;丁香乾;杨宁;;烟叶有害成分风险评估模型研究与应用[A];中国灾害防御协会风险分析专业委员会第二届年会论文集(一)[C];2006年
相关重要报纸文章 前3条
1 赵晓涛;从灾难中寻找安全[N];网络世界;2007年
2 安菁菁;滨海新区金融机构应重视信用风险管理[N];中国会计报;2010年
3 招商证券衍生投资部负责人 刘成彦;场外金融衍生品风险的类别及对策建议[N];证券时报;2013年
相关博士学位论文 前4条
1 戴明;长三角地区船联网信息感知与交互关键技术研究[D];长安大学;2016年
2 张万军;基于大数据的个人信用风险评估模型研究[D];对外经济贸易大学;2016年
3 徐磊;农业巨灾风险评估模型研究[D];中国农业科学院;2012年
4 廖年冬;信息安全动态风险评估模型的研究[D];北京交通大学;2010年
相关硕士学位论文 前10条
1 陈蓬来;面向农村的两阶段多肿瘤风险评估模型前期研究[D];安徽医科大学;2015年
2 申振华;中小企业信用风险评估模型研究[D];苏州大学;2015年
3 崔釜萍;住院患者静脉血栓栓塞危险因素的相关分析[D];华北理工大学;2015年
4 刘思帆;一种基于主机日志分析的实时风险评估模型的研究与实现[D];复旦大学;2014年
5 李美莲;基于信息服务保障行驶安全的主动控制策略研究[D];西安电子科技大学;2014年
6 徐笑蕊;面向数字版权管理系统的风险评估模型研究与应用[D];东华大学;2016年
7 刘烁;物流业专职驾驶员健康风险评估体系研究[D];山东财经大学;2016年
8 雷霞飞;基于行业风险系数的科技型中小企业风险评估模型的研究与实现[D];吉林大学;2016年
9 杨梦;我国上市公司信用风险评估模型比较及实证研究[D];西南交通大学;2015年
10 史健;我国台风风险评估及台风保险产品设计研究[D];广东财经大学;2015年
,本文编号:2177907
本文链接:https://www.wllwen.com/yixuelunwen/xiaohjib/2177907.html