血浆microRNA检测在肝硬化早期诊断中的价值
[Abstract]:Background: The diagnostic index with high sensitivity and specificity plays an important role in the diagnosis of liver cirrhosis and the follow-up and treatment of disease progression. A large number of studies have shown that miRNAs in the cycle can be used as a diagnostic index for many diseases, including chronic liver disease. The purpose of this study was to check the expression level of plasma miRNA in patients with liver cirrhosis and to study the significance of plasma miRNA as a non-invasive diagnostic marker of liver cirrhosis. experimental method: the study is a multi-stage case-control study, including the following parts: first part, The whole-genome miRNA expression was tested after treatment with primary expression phase,80 plasma samples (25 of which were hepatitis B cirrhosis,22 chronic hepatitis, and 33 normal controls). The chip contains 723 common miRNAs. After the results of the primary screen were analyzed, the validation of the second part of the six miRNAs was selected. The second part was the validation and modeling phase of the study. First, six miRNAs were tested by qPCR in 41 samples (20 hepatitis B cirrhosis,9 chronic hepatitis B and 12 normal controls) and two miRNAs with higher stability were selected. The results were verified by using qPCR in the remaining 141 samples (70 hepatitis B liver cirrhosis,23 chronic hepatitis B and 48 normal controls). The third part is the validation phase of the diagnostic model, and the miRNA diagnosis model obtained in the second part is respectively verified in two independent queues to ensure the stability of the index. One of the cohort had 44 samples, including 13 early cirrhosis with no clinical manifestations,25 chronic hepatitis and 6 normal controls, all of which had a clear diagnosis of the pathological findings of the liver, and 92 samples in the other cohort, Including 47 non-hepatitis B cirrhosis,7 non-hepatitis B-related chronic hepatitis and 38 normal controls. Experimental results:1. Six miRNAs (miR-106b, miR-122, miR-144, miR-181d, miR-181b, and miR-584) were selected for the next qPCR validation by full-genome miRNA expression chip detection. Three miRNAs (including niR-106b, miR-122, and miR-144) were significantly lower in patients with hepatitis B liver cirrhosis than in patients with chronic hepatitis B; and compared to normal controls, The levels of miR-181d and miR-181b in the plasma of patients with hepatitis B cirrhosis were significantly increased, and the level of miR-584 was significantly reduced. In the validation phase,6 miRNAs were validated, of which 2 miRNAs (miR-106b and miR-181b) had higher stability, and miR-106b was significantly down-regulated in hepatitis B liver cirrhosis, while n-miR-181b was significantly up-regulated. The diagnostic value of miR-106b and miR-181b for hepatitis B liver cirrhosis was 0.715 (95% CI, 0.641-0.789; sensitivity = 0.804, specificity = 0.522) and 0.833 (95% CI, 0.775-0.892; sensitivity = 0.678, specificity = 0.870). Whole-time modeling of miR-106b and miR-181b was performed to establish a liver cirrhosis diagnosis model: 1.763-miR181b-14.622-miR106b-0.367. The area of the ROC curve was 0.882 (95% CI, 0.834, 0.929; sensitivity = 0.856, specificity = 0.750), with high diagnostic value. Further validation of the diagnostic model in the early cirrhosis group found that the miRNA diagnostic model had a high diagnostic value for early cirrhosis and the area under the ROC curve was 0.774 (95% CI, 0.589-0.959; sensitivity = 0.615, specificity = 0.935). The miRNA diagnosis model is related to the fibroplasia of the liver cirrhosis, but is not related to the cause of the liver cirrhosis. The results of the non-hepatitis B liver cirrhosis group showed that the area under the ROC curve was 0.915 (95% CI, 0.854-0.976; sensitivity = 0.787, specificity = 0.932), indicating that the model was also applicable to the diagnosis of other types of liver cirrhosis. The miR-106b and miR-181b are not related to the degree of inflammation of the liver, and have no linear phase with other clinical indicators, including total bilirubin, albumin, ALT, prothrombin time and international normalized ratio. It is indicated that miR-106b and miR-181b are specific indicators for fiber formation, and are not directly related to the degree of liver inflammation, liver function and liver cell damage. Conclusion: Our study found that miR-106b and miR-181b can have high diagnostic value for patients with cirrhosis, and is especially suitable for patients with early cirrhosis.
【学位授予单位】:复旦大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R575.2
【相似文献】
相关期刊论文 前10条
1 陈秋梅;张敏强;;认知诊断模型发展及其应用方法述评[J];心理科学进展;2010年03期
2 胡永瑜;观测和设计诊断模型的简易方法[J];国外医学参考资料.口腔医学分册;1978年06期
3 杨涛;吴承玉;;基于人工神经网络的心系基础证诊断模型构建[J];中国中医基础医学杂志;2013年09期
4 江启煜;孙晓生;;试论“辨证元”计量诊断模型的基础[J];广州中医药大学学报;2010年02期
5 郭磊;苑春永;边玉芳;;从新模型视角探讨认知诊断的发展趋势[J];心理科学进展;2013年12期
6 周攀;丁银环;何鹏;吴鹏强;刘文军;王开正;;特发性血小板减少性紫癜血小板差异蛋白质组诊断模型的实验研究[J];中国实验血液学杂志;2013年01期
7 龚丽云;张震宇;郑燕华;张建中;;血清蛋白指纹图谱用于建立妊娠期高血压疾病诊断模型的研究[J];中华妇产科杂志;2007年12期
8 谢松喜;陈明;黄玉娟;陈剑光;胡晓;吴一龙;;非小细胞肺癌脑转移脑脊液蛋白质谱诊断模型的建立及其应用[J];中华肿瘤防治杂志;2009年20期
9 王士杰;张立玮;于卫芳;余捷凯;郑树;李英赛;尔丽绵;温登瑰;高金宏;徐志彬;;高发区筛查人群食管鳞癌血清蛋白指纹图谱诊断模型的建立及临床价值[J];中华肿瘤杂志;2007年06期
10 李蓉;孙媛;;机器学习技术在胸癌诊断中的应用[J];科学技术与工程;2011年20期
相关会议论文 前4条
1 刘文;边玉芳;陈玲丽;;题组认知诊断方法模拟研究[A];增强心理学服务社会的意识和功能——中国心理学会成立90周年纪念大会暨第十四届全国心理学学术会议论文摘要集[C];2011年
2 张辉;孔北华;;卵巢癌患者血清差异表达蛋白诊断模型的研究[A];中华医学会第九次全国妇科肿瘤学术会议论文汇编[C];2006年
3 宋丽红;汪文义;戴海琦;丁树良;;基于贝叶斯网的认知诊断模型构建[A];心理学与创新能力提升——第十六届全国心理学学术会议论文集[C];2013年
4 邱福铭;黄建;陈益定;余捷凯;;胃癌血清蛋白质质谱诊断模型的建立与评价[A];中国蛋白质组学第三届学术大会论文摘要[C];2005年
相关博士学位论文 前3条
1 陈妍洁;血浆microRNA检测在肝硬化早期诊断中的价值[D];复旦大学;2014年
2 何虹;口腔鳞状上皮细胞癌组织和患者血清、唾液蛋白质组学诊断模型的建立[D];浙江大学;2008年
3 万霞;死因推断量表肿瘤诊断模型的研究[D];中国协和医科大学;2007年
相关硕士学位论文 前8条
1 李旎;关于三值社会诊断模型的研究[D];湘潭大学;2009年
2 霍菲;初中数学个性化诊断模型研发的初步探讨[D];上海师范大学;2012年
3 周攀;原发免疫性血小板减少性紫癜血小板蛋白组学诊断模型的研究[D];泸州医学院;2013年
4 玄超;应用表面增强激光解析电离飞行时间质谱技术筛选鼻咽癌血清生物标志物及建立诊断模型的研究[D];广西医科大学;2009年
5 唐悦清;原发性醛固酮增多症模糊数学诊断模型的研究[D];山东大学;2006年
6 王泽和;基于人体测量学构建非体力劳动者NAFLD诊断模型及相关指标切点值的探讨[D];广东药学院;2013年
7 王晓丽;基于近红外光谱技术的水稻叶部病害诊断模型构建[D];中国农业科学院;2011年
8 郑慧禹;食管癌血清蛋白质谱结合人工神经网络诊断模型建立的应用研究[D];泸州医学院;2009年
,本文编号:2509398
本文链接:https://www.wllwen.com/yixuelunwen/xiaohjib/2509398.html