当前位置:主页 > 医学论文 > 预防医学论文 >

丙烯酰胺作业工人生物标志物研究

发布时间:2018-04-29 23:41

  本文选题:丙烯酰胺 + 生物标志物 ; 参考:《山东大学》2012年硕士论文


【摘要】:丙烯酰胺(Acrylamide,ACR)是一种重要的化工原料,主要用于生产其聚合物—聚丙烯酰胺(PACR)。后者则广泛用于饮水净化、污水处理、造纸、采矿等行业[1]。另外,高温烹饪(120℃以上)富含淀粉的食物(如土豆和谷物等)时也会产生ACR。ACR可通过呼吸道、消化道、皮肤黏膜等多种途径吸收,其中经消化道吸收最快,以皮肤接触导致职业中毒最常见。此外,哺乳动物细胞体外培养和体内试验均表明ACR具有神经毒性、生殖毒性、胚胎发育毒性和遗传毒性,但是由于缺乏流行病学方面的资料,至今能在人体内得到验证的只有神经毒性[2]。因职业接触而导致ACR中毒的情况近年来时有发生。寻找ACR特异的生物标志物,有助于评价ACR作业工人的暴露水平,预防ACR作业工人急慢性中毒的发生,为更好地保护职业暴露人群提供依据。本课题研究ACR暴露与生物材料指标之间的相关性,以寻找早期生物标志物,为ACR的接触评价和效应评价提供依据。 目的 通过测定ACR接触工人尿中乙酰半胱氨酸-S-丙酰胺(APC)、血清中钙离子(Ca2+)和蛋白激酶C(PKC)的含量,结合工人ACR个体暴露水平、职业相关因素和个人基本情况,探讨ACR接触工人暴露负荷与生物指标之间的关系以寻找早期生物学监测指标。 研究对象与方法 1.研究对象的选择:本研究选择某市ACR生产企业接触ACR的暴露组工人及管理、后勤岗位不接触ACR的对照组工人共138人,其中暴露组101人,对照组37人。 2.现场职业卫生调查:以查阅工厂资料和问卷调查相结合的形式了解工厂的生产工艺、工人的职业相关因素和个人基本情况。 3.样品的采集:空气中ACR浓度的样品采集按照国家标准《工作场所空气中有害物质监测的采样规范》(GBZ159-2004)中规定的方法,使用个体空气采样器,连接硅胶采样管进行采样;皮肤ACR污染量的样品采集用经蒸馏水润湿的医用棉球擦拭皮肤;尿样的采集使用聚乙烯塑料瓶收集工人班后尿;血样的采集使用一次性无添加剂真空采血管采集班后工人前臂静脉血。 4.样品的测定:空气中ACR浓度和工人皮肤ACR污染量的测定采用气相色谱法;工人尿中APC浓度的测定采用可见分光光度法;血清中Ca2+浓度的测定应用Ca2+试剂盒法(甲基百里香酚蓝法);血清中PKC浓度的测定应用ELISA检测试剂盒法。 5.数据处理与统计分析:建立Word文本资料数据库和Excel数据资料数据库,应用SPSS16.0软件进行统计分析。对数据进行正态性检验和方差齐性检验,应用单因素方差分析、简单线性相关分析和多元回归分析对各指标之间的关系进行研究。 结果 1.空气ACR浓度和皮肤ACR污染量测定所用气相色谱法的线性范围为0.10~2.0μg/ml,回归方程为y=3186918.408x+4388.271,相关系数为0.9997,检出限为1.4×10-5μg/ml,保留时间为1.633min。 2.工人尿APC测定所用分光光度法,游离巯基化合物的标准曲线y=2.375x-0.003,相关系数为0.998,游离巯基化合物的检出下限为0.002mmol/L:总巯基化合物的标准曲线为y=1.611x+0.000,相关系数为0.999,游离毓基化合物的检出下限为0.01mmol/L。 3.ACR暴露组工人空气ACR浓度为O.040±O.015mg/m3,对照组工人空气ACR未检出;ACR暴露组工人皮肤ACR污染量为2.003±0.961μg,对照组工人皮肤ACR未检出。 4.ACR暴露组和对照组工人尿中APC浓度分别为0.65±0.22mmol/L和0.54±0.18mmol/L,暴露组高于对照组(P0.05);暴露组和对照组工人血清中Ca2+浓度分别为2.18±0.15mmol/L和2.32±0.33mmol/L,暴露组低于对照组(P0.05);暴露组和对照组工人血清中PKC浓度分别为235.06±93.08nmol/L和194.73±98.98nmol/L暴露组高于对照组工人(P0.05)。 5.简单线性相关分析:ACR暴露工人尿中APC浓度、血清PKC浓度与皮肤ACR污染量呈正相关关系(P0.01);血清中Ca2+浓度与皮肤ACR污染量呈负相关关系(P0.01)。 6.多元回归分析:对工人尿中APC、血清中Ca2+和PKC浓度的影响因素中,进入方程的因素为皮肤ACR污染量。 结论 1.ACR暴露能够引起工人尿中APC、血清中Ca2+和PKC浓度的改变。 2.工人尿中APC、血清中Ca2+和PKC的浓度变化主要是通过皮肤吸收ACR引起的。 3.工人尿中APC、血清中Ca2+和PKC可能为ACR暴露的生物标志物。 4.空气ACR浓度和皮肤ACR污染量使用毛细管柱气相色谱仪进行测定,分离效果好、高效、快速;个体空气采样使用硅胶采样管,符合现场采样要求。
[Abstract]:Acrylamide (ACR) is an important chemical raw material, mainly used in the production of polymer polyacrylamide (PACR). The latter is widely used in drinking water purification, sewage treatment, paper making, mining and other industries [1].. The high temperature cooking (above 120 degrees C) rich in flour (such as potatoes and grains) will also produce ACR.ACR through the call. Absorption of the channels, digestive tract, skin and mucous membrane, including the fastest absorption of the digestive tract, and the most common cause of occupational poisoning by skin contact. In addition, mammalian cells in vitro culture and in vivo tests indicate that ACR has neurotoxicity, reproductive toxicity, embryonic development toxicity and hereditary toxicity, but because of lack of epidemiology. Materials, only neurotoxic [2]. caused by occupational exposure to ACR poisoning, have occurred in recent years. Looking for ACR specific biomarkers will help to evaluate the exposure level of ACR workers, prevent the occurrence of acute and chronic poisoning in ACR workers, and provide a better protection for the occupational exposure population. According to this topic, we study the correlation between ACR exposure and biomaterial indicators, in order to find early biomarkers, and provide basis for ACR contact evaluation and effect evaluation.
objective
By measuring the content of acetylcysteine -S- propanamide (APC) in urine of ACR workers, serum calcium ion (Ca2+) and protein kinase C (PKC), the relationship between exposure load and biological index of workers in ACR contact workers was explored to find the early biological monitoring index by combining the exposure level of ACR individual, occupational related factors and individual basic conditions.
Research objects and methods
1. the selection of the research subjects: This study selected the exposed workers and management of the ACR production enterprises in a city and the management of the exposed group of ACR, and the control group who did not contact the ACR in the logistics post was 138, of which 101 were exposed and 37 in the control group.
2. on-site occupational health survey: in the form of consulting factory data and questionnaire survey, the production process of the factory, the occupational related factors of the workers and the basic individual situation of the individual are understood.
3. sample collection: samples of ACR concentration in the air are collected in accordance with the national standard < Standard for sampling of harmful substances in the air of the workplace > (GBZ159-2004). Individual air sampler is used to connect silica sampling tube for sampling; samples of ACR pollution of skin are collected by medical cotton ball wetted with distilled water. The collection of urine samples was collected using polyethylene plastic bottles to collect urine after the workers' class.
4. determination of the samples: the determination of ACR concentration in the air and the ACR pollution of the workers' skin by gas chromatography; the determination of APC concentration in the urine of workers using visible spectrophotometry; the determination of Ca2+ concentration in serum by Ca2+ Kit (methyl thymol blue), and the determination of PKC concentration in serum by ELISA detection kit method.
5. data processing and statistical analysis: establishing Word text data database and Excel data data base, using SPSS16.0 software for statistical analysis. The normal test and variance homogeneity test of data are carried out, single factor ANOVA, simple linear correlation analysis and multiple return analysis are used to study the relationship between each index.
Result
The linear range of 1. air ACR concentration and skin ACR pollution measured by gas chromatography was 0.10 ~ 2 mu g/ml, the regression equation was y=3186918.408x+4388.271, the correlation coefficient was 0.9997, the detection limit was 1.4 * 10-5 mu g/ml, and the retention time was 1.633min.
2. the spectrophotometric method was used to determine the urine APC of workers. The standard curve of the free sulfhydryl compound was y=2.375x-0.003, the correlation coefficient was 0.998. The standard curve of the detection limit of the free sulfhydryl compound was y=1.611x+0.000, the correlation coefficient was 0.999, the detection limit of the free Yuk compound was 0.01mmol/L..
The concentration of air ACR in the exposed group of 3.ACR was O.040 + O.015mg/m3, and the air ACR in the control group was not detected, and the ACR pollution of the workers in the ACR exposed group was 2.003 + 0.961 mu g, and the skin ACR in the control group was not detected.
The urine APC concentration in the exposed group and the control group was 0.65 + 0.22mmol/L and 0.54 + 0.18mmol/L respectively, and the exposure group was higher than the control group (P0.05). The concentration of Ca2+ in the exposed group and the control group was 2.18 + 0.15mmol/L and 2.32 + 0.33mmol/L respectively. The exposure group was lower than the control group (P0.05), and the serum PKC concentration in the exposed and control groups was in the serum of the exposed and control groups. The exposure group of 235.06 + 93.08nmol/L and 194.73 + 98.98nmol/L was higher than that of the control group (P0.05).
5. simple linear correlation analysis: ACR exposed workers' urine APC concentration, serum PKC concentration was positively correlated with skin ACR pollution (P0.01), and serum Ca2+ concentration was negatively correlated with skin ACR pollution (P0.01).
6. multivariate regression analysis: the factors affecting the concentration of APC and Ca2+ and PKC in the urine of workers were skin contamination of ACR.
conclusion
1.ACR exposure can cause urinary APC and serum Ca2+ and PKC concentrations in workers.
2. the level of APC in urine and Ca2+ and PKC in serum were mainly caused by absorption of ACR through skin.
3. APC in workers urine, Ca2+ and PKC in serum may be biomarkers for ACR exposure.
4. the concentration of air ACR and the ACR pollution of skin were measured by capillary column gas chromatograph. The separation effect was good, high efficiency and rapid. The individual air sampling used silica gel tube, which was in line with the requirement of field sampling.

【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R131

【参考文献】

相关期刊论文 前10条

1 梁益建;孙善全;刘辉;贺桂琼;;脊髓进行性压迫损伤过程中脊髓神经细胞内Ca~(2+)和Ire1的变化[J];重庆医学;2009年12期

2 赵玲,陈坚刚;谷胱甘肽S-结合物形成对肾毒物和致癌物的生物活化作用[J];国外医学.卫生学分册;1994年01期

3 尚波;傅恩惠;;职业性丙烯酰胺中毒49例临床分析[J];工业卫生与职业病;2009年01期

4 邵华;巯基尿酸──亲电化合物新的生物监测指标[J];工业卫生与职业病;1996年04期

5 项静燕;赵玉武;陈自柳;周健;;糖尿病大鼠血蛋白激酶C和骨骼肌Bax/B细胞淋巴瘤-2、天冬氨酸特异性半胱氨酸蛋白酶-3变化及其意义[J];中国临床医学;2008年06期

6 周元陵;生物标志物巯基尿酸的研究进展[J];劳动医学;2001年03期

7 赫秋月,韩漫夫,饶明俐;丙烯酰胺中毒后6J鼠神经组织离子的改变[J];中国工业医学杂志;2000年05期

8 于素芳,谢克勤;丙烯酰胺的神经毒性研究概况[J];毒理学杂志;2005年03期

9 于素芳;谢克勤;张翠丽;赵秀兰;于丽华;张天亮;李闪霞;崔宁;韩晓英;朱振平;;丙烯酰胺对大鼠小脑神经丝蛋白的影响[J];毒理学杂志;2005年04期

10 于素芳,谢克勤,赵秀兰,于丽华,张天亮,李闪霞,崔宁,张翠丽,朱振平;丙烯酰胺中毒对大鼠脊髓细胞骨架蛋白表达的影响[J];毒理学杂志;2005年S1期

相关博士学位论文 前1条

1 于素芳;丙烯酰胺对神经组织细胞骨架蛋白的损伤及其损伤机制[D];山东大学;2006年

相关硕士学位论文 前8条

1 李大鲁;单胺类神经递质在成人牙科畏惧症患者血浆中的表达[D];山东大学;2011年

2 郑秀娥;大鼠丙烯酰胺中毒神经行为的改变及神经毒性机制的研究[D];山东大学;2011年

3 易超;丙烯酰胺亚慢染毒大鼠的生物效应标志物的初步研究[D];山东大学;2006年

4 尹明锡;电针对急性脊髓损伤大鼠一氧化氮及钙离子作用的机理研究[D];北京中医药大学;2007年

5 刘如春;电针对急性脊髓损伤大鼠差异表达基因及钙离子作用的实验研究[D];北京中医药大学;2007年

6 黄璐;丙烯酰胺对神经丝磷酸化有关的蛋白激酶及相关蛋白的影响[D];山东大学;2010年

7 郑芸鹤;丙烯酰胺对大鼠脊髓组织蛋白激酶的影响[D];山东大学;2010年

8 李雅飞;内脏脂肪素和可溶性血管细胞粘附分子-1在2型糖尿病肾病患者血清中的表达水平及其临床意义[D];苏州大学;2010年



本文编号:1822120

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/yufangyixuelunwen/1822120.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户32d46***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com