Chk1介导的CCNB1高表达在结直肠癌中的作用及机制研究
[Abstract]:Colorectal cancer is one of the major malignant tumors that seriously endanger human health. The incidence and mortality of colorectal cancer rank second in female malignancies, third in male malignancies, second only to lung cancer and breast cancer. With the development of Medical Science in recent years, the level of treatment for colorectal cancer has also been greatly improved. At present, the incidence of colorectal cancer has been related to the occurrence of colorectal cancer. The development and progression of colorectal cancer is a complex process, not only related to external factors such as environment, diet and living habits, but also a complex process involving multiple stages, steps and genes. Cyclin B1 (CCNB1) is an important member of the cyclin family and an important cell related to G2/M detection sites in cells. Cyclin-dependent kinase-1 (CDK1) is an important regulator of cell cycle. It regulates and forms a complex with cyclin-dependent kinase-1 (CDK1) to phosphorylate the substrate, initiates the cell from G1/S phase to G2/M phase, and promotes mitosis. Inhibition of CCNB1 expression has been shown to make breast cancer cells more sensitive to chemotherapy. In addition, studies have shown that wild-type P53 inhibits CCNB1 transcription through SP1 transcription factors in tumor cells. The expression of CCNB1 was low in HCT116 p53+/+ cells and high in HCT116 p53-/-cells. These studies suggest that CCNB1 may play a key role in tumor development. However, the specific functional mechanism of CCNB1 in colorectal cancer remains unknown. Most cancers are thought to be highly dependent on cells. The abnormal expression of cyclic checkpoint kinase 1 (Chk1) and CCNB1 were previously used as biomarkers for predicting the efficacy of Chk1 inhibitors. At present, there are many studies on the expression mechanism and clinical significance of CCNB1 and Chk1 in colorectal cancer, but whether there is a correlation between them and which pathway they share. In this study, we examined the expression of CCNB1 and Chk1 in colorectal cancer and normal colorectal tissues, and analyzed the correlation between them. Chk1 was proved to be a positive regulator of CCNB1 by cell function test in vitro and in vivo and in vitro. The purpose of this study is to reveal the new mechanism of the occurrence and development of colorectal cancer and to provide solid and reliable experimental evidence and theoretical support for exploring new strategies for the prevention and treatment of colorectal cancer. Part I: Expression and function of CCNB1 in colorectal cancer Objective: To verify the elevated expression of CCNB1 in colorectal cancer tissues and to determine the effect of CCNB1 on the proliferation, cycle and apoptosis of colorectal cancer cells. The expression levels of CCNB1 mRNA and protein in normal tissues and adjacent tissues were measured. P53-wild HCT116, P53-mutant SW480 and P53-null HCT116 cell lines were selected as experimental subjects. CCNB1-specific siRNA or negative control siRNA were transfected by cell transfection technique. The proliferation of tumor cells was detected by MTT assay, and the cell cycle was detected by PI single staining. Results: 1. The expression of CCNB1 in colorectal cancer tissues was significantly higher than that in adjacent normal tissues. 2. In colorectal cancer cell lines P53-wild HCT116, SW480 and P53-null HCT116, the expression of CCNB1 was inhibited. Inhibition of CCNB1 expression in P53-wildHCT116 cells can promote early apoptosis of tumor cells by regulating the p53/B ax pathway, and inhibit the expression of CCNB1 in P53-null HCT116 cells. Conclusion: 1. The expression of CCNB1 in colorectal cancer tissues increased significantly. 2. The down-regulation of CCNB1 expression can inhibit the proliferation of colorectal cancer cells, induce G2/M phase arrest of cell cycle and promote apoptosis of tumor cells, suggesting that CCNB1 plays a carcinogenic role in the development of colorectal cancer. High expression of CCNBl in colorectal cancer depends on the expression of cell cycle checkpoint kinase 1 (Chkl). To determine that Chkl is the upstream regulatory molecule of CCNBl and to reveal the mechanism of Chk1 in colorectal cancer. Methods: First, the expression of Chk1 mRNA was detected by qRT-PCR in colorectal cancer tissues and normal tissues adjacent to the cancer, and Western blot was used to detect the expression of Chk1 mRNA. Secondly, siRNA was used to specifically interfere with the expression of Chkl in colorectal cancer cells, Western blot was used to detect the expression of CCNB1 protein, MTT assay was used to detect the proliferation of tumor cells, and the role of Chkl in colorectal cancer and the regulatory role of CCNB1 were clarified. The expression level of CCNB1 in colorectal cancer tissues was significantly higher than that in adjacent normal tissues, and was positively correlated with the expression level of CCNB1. 2. Interference with the expression of Chk1 in colorectal cancer cells could inhibit the protein level of CCNB1 and inhibit cell proliferation. Molecule. Part III. Lentiviral-mediated inhibition of CCNB1 shRNA on colorectal cancer xenografts in nude mice Objective: To investigate the regulatory effect of continuous inhibition of CCNB1 expression on the growth of transplanted tumors in nude mice. HCT116 and SW480 cell lines were screened by antibiotics to obtain stable low-expression CCNB1 cell lines. The expression level of CCNB1 was detected by Western blot to determine the screening efficiency. The expression of CCNB1 was detected by immunohistochemical staining and the expression of CDC25C, CDK1, p53 and Bax was detected by Western blot. Results: 1. Inhibition of CCNB1 expression could inhibit the growth of transplanted tumor in nude mice. 2. Inhibition of CCNB1 expression in transplanted tumor could inhibit the downstream cells of CCNB1. The expression of cyclin-associated proteins CDC25C and CDK1 was down-regulated, and the expression of apoptosis-related proteins p53 and Bax was down-regulated in HCT116 transplanted tumors. Conclusion: Inhibition of CCNB1 in nude mice can inhibit the growth of colorectal cancer xenografts, which is consistent with the study in vitro.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R735.34
【相似文献】
相关期刊论文 前10条
1 王汉涛 ,Kraemer M.;随访危险因素分析:复发和非复发结直肠癌的比较[J];中国实用外科杂志;2001年12期
2 苏森;患结直肠癌妇女后代癌症的危险性增加[J];中国肿瘤;2001年06期
3 汪一虹;在确定的法国人群中年龄<45岁结直肠癌病人与≥45岁结直肠癌病人的比较[J];国外医学(消化系疾病分册);2002年01期
4 李会晨;结直肠癌解剖位置的连续性右向迁移[J];国外医学.外科学分册;2003年03期
5 李志霞;结直肠癌复发及转移的综合治疗[J];中华胃肠外科杂志;2003年06期
6 何建苗,蒲永东,曹志宇,刘卫平;老年人结直肠癌186例的外科治疗[J];中华胃肠外科杂志;2003年05期
7 保红平,方登华,高瑞岗,李奎,张雪松,刘天锡;青年人结直肠癌临床病理分析[J];中国普外基础与临床杂志;2004年01期
8 章江;;监测结直肠癌非常必要[J];国外医学情报;2004年04期
9 郜文秀,杨艳芳,梁小波,李耀平,李佩珍;细胞粘附分子变异体在结直肠癌中的表达及预后[J];中国公共卫生;2005年07期
10 Nozawa T. ,Enomoto T. ,Koshida Y. ,M. Kuranami,王志宇;人结直肠癌黏膜下血小板源性内皮细胞生长因子特异性增强表达[J];世界核心医学期刊文摘(胃肠病学分册);2005年06期
相关会议论文 前10条
1 郑树;;结直肠癌预后与转移相关因素分析[A];2005年浙江省肿瘤学术会议全国大肠癌转移与复发的诊治研讨会学术论文集[C];2005年
2 邹一峰;吴小剑;兰平;;结直肠癌免疫治疗新进展[A];第十一次全国中西医结合大肠肛门病学术会议论文汇编[C];2006年
3 郁宝铭;;结直肠癌治疗的进展及其新理念[A];2006年浙江省肛肠外科学术年会论文汇编[C];2006年
4 王锡山;;结直肠癌治疗的困惑之我见[A];第九届全国肿瘤转移学术大会暨2011年黑龙江省医学会肿瘤学年会报告集[C];2011年
5 秦建平;;未病思想中的结直肠癌预防[A];贵州省中西医结合学会肛肠学会第五届学术交流会暨新技术新进展学习班论文汇编[C];2012年
6 高文庆;陈会林;童蕾;陆松春;;老年梗阻性结直肠癌诊疗体会(附42例报告)[A];首届“之江中医药论坛”暨浙江省中医药学会2011年学术年会论文集[C];2011年
7 王启远;周长江;高云飞;徐岩;李坤;;血管内皮生长因子与结直肠癌[A];《中华急诊医学杂志》第八届组稿会暨急诊医学首届青年论坛论文汇编[C];2009年
8 巴一;;结直肠癌靶向治疗进展[A];第三届中国肿瘤内科大会教育集暨论文集[C];2009年
9 何超;朱洪波;;结直肠癌的生物治疗[A];2009年浙江省肿瘤外科学术年会暨肿瘤外科规范化诊治学习班论文汇编[C];2009年
10 万德森;;进一步提高结直肠癌疗效的思考[A];2009年浙江省肿瘤学术年会暨肿瘤诊治新进展学习班论文汇编[C];2009年
相关重要报纸文章 前10条
1 中华医学会肿瘤学分会主任委员 顾晋;分期不精确 致结直肠癌过度治疗[N];健康报;2012年
2 本报记者 贾岩;跨线治疗成结直肠癌最后防线[N];医药经济报;2012年
3 本报记者 贾岩;跨线治疗构筑结直肠癌最后防线[N];医药经济报;2012年
4 本报记者 林琳;结直肠癌:可以治愈的癌症[N];医药经济报;2013年
5 记者 张妍 通讯员 熊静帆 朱品磊;深圳结直肠癌发病高于全国[N];深圳商报;2013年
6 本报记者 孙刚;预防结直肠癌:请管住嘴[N];解放日报;2013年
7 上海市中医医院肿瘤科 侯凤刚 副主任医师;中医药在结直肠癌治疗中的作用和特色[N];上海中医药报;2014年
8 李华虹 孙瑜淼 记者 李丽云 实习生 阴浩;专家呼吁:结直肠癌应多学科规范化诊疗[N];科技日报;2014年
9 ;降低结直肠癌复发有新疗法[N];人民日报;2003年
10 韩自力;新化疗方案可高效治疗结直肠癌[N];健康报;2007年
相关博士学位论文 前10条
1 陈涛;MicroRNA-31/FIH-1调控关系在结直肠癌发生发展中的作用及其机制研究[D];复旦大学;2014年
2 任翡;MYBL2基因在结直肠癌的表达及机制的初步探讨[D];复旦大学;2014年
3 吴朋;结直肠癌中microRNA-615基因甲基化及其生物学特性探究[D];复旦大学;2014年
4 李泽武;MicroRNA-203靶向ZNF217基因调控结直肠癌生物学行为的研究[D];山东大学;2015年
5 徐兴远;低分子肝素对结直肠癌患者预后的影响及相关机制的研究[D];复旦大学;2014年
6 梁洪亮;miR-454在结直肠癌中的功能及其作用机制[D];山东大学;2015年
7 金鹏;MMR蛋白在雌激素致结肠癌细胞凋亡中的作用及SEPT9检测结直肠癌的研究[D];第三军医大学;2015年
8 珠珠;云南省Lynch综合征候选基因标志物研究[D];昆明医科大学;2014年
9 周智航;SEMA3F通过下调ASCL2-CXCR4轴而抑制结直肠癌转移的分子机制[D];第三军医大学;2015年
10 王林;MiRNA-300对结直肠癌肿瘤侵袭和增殖的影响及其调控机制的初步研究[D];第三军医大学;2015年
相关硕士学位论文 前10条
1 颜斐斐;术后结直肠癌患者癌因性疲乏与影响因素的研究[D];南方医科大学;2009年
2 李斌;结直肠癌患者就诊延迟分析[D];中南大学;2009年
3 叶建杰;慈溪市结直肠癌危险因素病例对照研究[D];浙江大学;2008年
4 赵波;结直肠癌危险因素及临床流行病学特征的调查与分析[D];广西医科大学;2013年
5 崔娟娟;p53和nm23在结直肠癌中的表达及其临床意义[D];河北联合大学;2014年
6 宋青芳;正常肠道、癌前病变、结直肠癌相关微生物组学比较分析[D];昆明理工大学;2015年
7 郭秀燕;结直肠癌术后生存分析[D];泰山医学院;2014年
8 王静;TL1A在结肠炎相关结直肠癌动物模型中作用的初步探讨[D];河北医科大学;2015年
9 吴哲;Th17细胞在TL1A调控结肠炎相关结直肠癌中作用的初步研究[D];河北医科大学;2015年
10 肖华旭;通过microRNA-155下调SOCS-1在结直肠癌的表达促进其转移和侵袭[D];川北医学院;2015年
,本文编号:2226209
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2226209.html