男子生精功能发生过程中piRNA功能的初步研究及miR-96促进乳腺癌发生机制的研究
[Abstract]:Small-molecule non-coding RNA, mainly including tRNA. snRNA. SnRNA. microRNA (miRNA). RNA molecules of non-coding proteins such as siRNA and Piwi-intting RNA (piRNA). As the research of RNA is in-depth, the research of small-molecule non-coding RNA has also attracted attention and attention, and it is now known that they play an important role in the transcription, post-transcriptional regulation and the guiding of chromatin modification complexes. The piRNA is a class of small-molecular, non-coding RNAs, isolated from the mammalian germ cells, of a length of about 26-31nt, and is combined with the PIWI protein family member. At present, although it is known that the piRNA plays an important role in the formation of spermatogenesis, the distribution of piRNA in the seminal plasma of the male is not completely clear. In the first part of the first section of this study, we systematically examined the difference expression profile of the piRNA in the seminal plasma of the male sterile patient and the normal control, and screened a piece of piRNA expressing the difference in the male sterile male. We collected a total of 91 normal controls and 211 male sterile patients with seminal plasma samples. The RNA was extracted from 21 patients with normal control and 21 of the patients with azoospermia, and then the RNA was sequenced by high-throughput sequencing, and there were 61 pieces of piRNA clearly expressed in the sterile patient group and the normal control group. Then we used the real-time fluorescence quantitative PCR (qRT-PCR) technology to detect the piRNA in each sample, using a small amount of sample size (including 16 normal controls,20 patients with hypospermia and 20 patients with azoospermia) to screen out 61 pieces of piRNA from the primary screen, and the result of the re-screening showed that there were 4 pieces of piRNA (piR-31068, piR-31925, Pir-43771 and pir-43773) were significantly reduced in the seminal plasma of patients with asthenospermia;5 pieces of piRNA (iR-31068, piR-31925, piR-43771, piR-43773, and piR-30198) were significantly reduced in the seminal plasma of the unrefined group. The double-screened piRNA was then validated using a large number of samples (including 58 normal controls,74 patients with hypospermia and 52 patients with azoospermia) and the results were consistent with the results of the re-screening. In the whole process, we used the synthetic standard of piRNA to construct the standard curve, so the absolute concentration of piRNA was calculated. At the same time, we used the ROC curve analysis and the Risk _ score analysis to show that the five pieces of piRNA do distinguish between the normal control and the sterile patient. In the second part of the first part of this study, we also sequenced the pieces of piRNA in the sperm of the normal control and the asthenospermia by the high-throughput sequencing technique, and the results showed that the content and type of piRNA in the sperm of the patients with asthenospermia were significantly reduced. The detection of the protein in the sperm showed that the expression of the MitePLD in the patients with asthenospermia was significantly reduced, and the difference was highly likely to affect the formation of piRNA in the sperm. A large number of Exosomes were found in the seminal plasma by electron microscopy, and most of the piRNA was found to be present in the Exosome. MiRNA is a small molecule non-coding RNA with a length of about 21 nt, and a large number of studies have shown that the miRNA is involved in regulating the human gene of -30%, and relates to many physiological processes, including organ development, cell differentiation, cell cycle and cell apoptosis. There are also 1 miRNAs that play an important regulator in the occurrence and progression of cancer, including breast cancer. The second section of this study mainly studies the expression of miR-96 in breast cancer and its biological function in the process of breast cancer. In this experiment, the expression of miR-96 in the sample of breast cancer was increased by clinical samples, and the in vitro experiment showed that miR-96 promoted the proliferation, migration and invasion of the cells, and the animal experiment found that the miR-96 promoted the growth of the tumor. The biological function of the PTPN9 is negatively correlated with the biological function of the miR-96 by means of the bioinformatics prediction and the experiment to verify the occurrence and development of the breast cancer by targeting the PTPN9 protein, and then, the expression level of the PTPN9 protein is reduced or increased in the breast cancer cell, and the result shows that the biological function of the PTPN9 is inversely related to the biological function of the miR-96, This also indicates that miR-96 is a biological function by inhibiting the PTPN9 protein. The experiment shows that miR-96 plays an important role in the development of breast cancer and plays a biological function by targeting the PTPN9 protein, and also provides a new molecular biological mechanism for the occurrence of breast cancer.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R737.9;R698.2
【相似文献】
相关期刊论文 前10条
1 黄啸原;用“印度阅兵”形容乳腺癌合适吗?[J];诊断病理学杂志;2001年02期
2 张嘉庆,王殊,乔新民;乳腺癌的现状和远景[J];中华外科杂志;2002年03期
3 张维彬,汪波,石灵春;中医药在现代乳腺癌治疗中的运用[J];中国中西医结合急救杂志;2002年01期
4 薛志勇;食物与乳腺癌[J];山东食品科技;2002年04期
5 王旬果,王建军,郑国华;乳腺癌相关标志物的研究进展[J];山东医药;2002年33期
6 陆尚闻;;男人也患乳腺癌[J];环境;2003年12期
7 ;新技术清晰拍摄早期乳腺癌细胞[J];上海生物医学工程;2005年04期
8 田富国;郭向阳;张华一;;乳腺癌诊治研究新进展[J];肿瘤研究与临床;2005年S1期
9 马涛,谷俊朝;血管内皮生长因子与乳腺癌的临床研究进展[J];国外医学(外科学分册);2005年01期
10 郭庆良,谷俊朝;乳腺癌和瘦素相关性研究进展[J];国外医学.外科学分册;2005年03期
相关会议论文 前10条
1 于永利;;抗乳腺癌免疫治疗融合蛋白[A];中国免疫学会第四届学术大会会议议程及论文摘要集[C];2002年
2 郭红飞;;中医治疗乳腺癌的策略[A];江西省中医、中西医结合肿瘤学术交流会论文集[C];2012年
3 庞朋沙;伍会健;;乳腺癌治疗靶标的研究进展[A];北方遗传资源的保护与利用研讨会论文汇编[C];2010年
4 陆劲松;邵志敏;吴炅;韩企夏;沈镇宙;;新型维甲酸抑制乳腺癌细胞的生长及诱导凋亡的机制研究[A];2000全国肿瘤学术大会论文集[C];2000年
5 刘爱国;胡冰;;乳腺癌临床治疗进展[A];安徽省抗癌协会第四次代表大会暨乳腺癌、肺癌专业委员会成立会议、安徽省肿瘤防治进展学术研讨会论文汇编[C];2001年
6 张嘉庆;王殊;乔新民;;乳腺癌的现状和远景[A];第一届全国中西医结合乳腺疾病学术会议论文汇编[C];2002年
7 刘清俊;;乳腺癌综合治疗的新进展[A];山西省抗癌协会第六届肿瘤学术交流会论文汇编[C];2003年
8 邵志敏;;21世纪乳腺癌治疗的展望[A];第三届中国肿瘤学术大会教育论文集[C];2004年
9 陈松旺;张明;;乳腺癌治疗的回顾与展望[A];西部地区肿瘤学学术会议论文汇编[C];2004年
10 白霞;傅建新;丁凯阳;王兆钺;阮长耿;;组织因子途径抑制物-2在乳腺癌细胞中的表达研究[A];第10届全国实验血液学会议论文摘要汇编[C];2005年
相关重要报纸文章 前10条
1 ;血检有望揭示乳腺癌治疗效果[N];医药经济报;2004年
2 记者 郑晓春;乳腺癌细胞扩散基因被找到[N];科技日报;2007年
3 中国军事医学科学院肿瘤中心主任 宋三泰;乳腺癌有了新疗法[N];中国妇女报;2002年
4 王艳红;抑制DNA修补可消灭乳腺癌细胞[N];医药经济报;2005年
5 詹建;乳腺癌饮食 两个时期不一样[N];中国中医药报;2006年
6 辛君;乳腺癌扩散基因“浮出水面”[N];大众卫生报;2009年
7 记者 毛黎;美发现有效抑制乳腺癌细胞生长的分子[N];科技日报;2010年
8 记者 吴春燕 通讯员 王丽霞;乳腺癌治疗将有新途径[N];光明日报;2011年
9 王乐 沈基飞;我科学家发现导致乳腺癌耐药的新标志物[N];科技日报;2011年
10 刘霞;一种天然分子能阻止乳腺癌恶化[N];科技日报;2011年
相关博士学位论文 前10条
1 柴红燕;疾病状态下CYP4Z1和4A的生物学行为及其药物干预研究[D];武汉大学;2012年
2 李凯;ID(inhibitor of DNA binding)家族蛋白调控乳腺细胞的分化并影响乳腺癌的预后[D];复旦大学;2014年
3 江一舟;乳腺癌新辅助化疗前后基因变异检测及其功能论证[D];复旦大学;2014年
4 马邵;酪氨酸去磷酸化增强表皮生长因子受体在乳腺癌治疗中靶向性的研究[D];山东大学;2015年
5 姚若斯;精氨酸甲基转移酶PRMT7诱导乳腺癌细胞发生表皮—间质转换及转移的作用机制研究[D];东北师范大学;2015年
6 侯培锋;α-酮戊二酸二甲酯(DM-2KG)上调缺氧诱导因子-1α(HIF-1α)诱发高致瘤性干细胞样乳腺癌细胞机制研究[D];福建医科大学;2014年
7 李丽丽;分泌蛋白SHON调控乳腺癌细胞EMT的分子机制研究[D];东北师范大学;2015年
8 陈丽艳;PI3K抑制剂联合组蛋白去乙酰化酶抑制剂对乳腺癌协同杀伤作用的分子机制研究[D];延边大学;2015年
9 朴俊杰;乳腺癌差异基因筛选及PAIP1对其生物学行为的影响[D];延边大学;2015年
10 汪[?如;染色体6q25.1区域基因多态性与乳腺癌遗传易感性的关联研究[D];南方医科大学;2015年
相关硕士学位论文 前10条
1 杜文英;乳腺癌分子亚型的临床与病理特点[D];郑州大学;2011年
2 贾晓菲;彩色多普勒超声与乳腺癌病理及免疫组化指标的相关性研究[D];内蒙古大学;2015年
3 靳文;乳腺癌全基因组DNA甲基化修饰的研究[D];内蒙古大学;2015年
4 吴坤琳;TLR4/MyD88信号通路对乳腺癌侵袭性影响的实验研究[D];福建医科大学;2015年
5 葛广哲;树,
本文编号:2509308
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2509308.html