金刚石切削微纳结构的高精度在位测量关键技术研究
本文选题:微纳结构 切入点:金刚石切削 出处:《浙江大学》2016年博士论文
【摘要】:随着科技产品向高性能化、高精度化、高集成化方向发展,微制造结构表面在航空航天、电子制造、光机电、生物医疗等高端产业得到了越来越广泛的应用。随着制造技术的不断突破和过程不断复杂化,如何保证制造精度给现代检测提出了新的挑战,而高精度测量已成为保障微纳加工质量的唯一有效的技术手段。现代微纳制造尤其是超精密金刚石切削加工技术不断呈现新的特征,加工出的微纳结构形貌从原来简单的一维发展为三维结构,具有横向跨尺度、纵向复杂化的特征,然而:1)现有高精度测量系统对不同特征复杂微结构的测量顾此失彼,无法同时实现大面积、大行程、高精度快速测量,更重要的是对一些复杂难测微纳结构存在测不到、测不准的技术难题;2)现有多数高精度测量系统冗余复杂,环境要求苛刻,无法推广到空间有限、环境多样化的微纳加工过程中,因而只能用于离线测量,即需要将工件从加工现场拆卸,由于工件二次装夹误差的存在,中断了后续的加工工艺;3)现有的在位测量手段大多局限于局部线轮廓的测量,对三维复杂微纳结构的整体面型扫描仍然存在瓶颈;4)由于微纳加工现场诸多不确定性因素,真实可靠地综合评估面型测量结果、实现测量加工的有机融合和微纳加工面型的质量控制有待进一步研究。本论文针对微纳加工过程制造精度和质量控制的要求,从难测结构的大范围快速测量技术、测量系统集成、复杂三维微纳结构的空间在位螺旋测量方法、面向超精密单点金刚石切削加工过程的应用等多个层面提出一系列创新性方法和解决方案,形了系统性的关键技术,并开发了具有自主知识产权的用于超精密金刚石机床的在位测量仪器装备,成功实现了复杂微纳结构的三维形貌高精度在位测量和加工误差评估反馈,有效地保障了金刚石切削微纳结构的加工精度。本论文总共分为以下六章:第一章概述了微纳制造技术的研究背景,指出微纳器件结构复杂化的发展趋势以及快速高精度测量对微纳制造的重要意义。对目前主流的微纳结构测量仪器和优缺点作出了简要概述,明确了扫描探针显微镜在微纳检测中的有效性。描述了目前国内外微纳结构测量领域的研究现状,指出微纳结构测量所面临的测不准测不快等技术难题,以及在位测量的重要性,并概述了本论文的主要研究内容和意义。第二章针对微纳加工结构大面积高精度扫描测试及扫描探头在机床中微纳米定位的需求,设计了一种压电陶瓷驱动的新型两自由度具有多级放大的微纳米定位平台,避免了精密电机运动平台造价高、回程误差、动态响应低、装配误差等一系列问题。来源于"微夹持器"的概念,所设计平台通过Z形导向放大机构的弯曲放大最终实现了两个自由度的运动传递以及解耦导向,使样品的大面积扫描测试和扫描探头在机床中的微纳米定位成为可能。第三章开发了基于扫描隧道效应的测量探头,提出了基于反对称变换的快速探头伺服测量技术,有效解决了深沟槽等难测结构测不快、测不准的技术难题。将其嵌入到金刚石飞刀切削的微加工过程中,实现了加工后工件的快速在位测量,通过测量结果反馈加工,菱形阵列的形貌得到了保证。实验结果表明,所研发的快速伺服测量探头及在位测量技术在微切削结构形貌控制方面起到重要的作用。第四章提出了面向超精密单点金刚石切削的在位测量技术和高长径比探针的自动对中策略;提出了空间在位螺旋测量方法,可以实现探针对三维微纳结构曲面基底的法向矢量跟踪,通过面型重构达到了传统离线仪器难以获取的优异面型轮廓,并能准确地表征三维微纳结构的加工误差。第五章针对微纳结构形貌误差表征高精度、高可靠性的检测需求,同时考虑了加工和测量误差对形貌误差评估结果的重要影响,建立了基于门特卡罗算法的加工测量一体化形貌误差在位评估模型,并得到了实验验证。最后,所提出基于快速探头伺服测量技术的在位螺旋测量系统与快速刀具伺服加工系统融合形成协同工作方式,实现了加工-测量反馈-补偿加工的制造模式。第六章总结了本论文的主要工作、创新点和关键技术,并对面向微制造过程的在位测量的研究进行了展望。
[Abstract]:With the development of science and technology products to high performance, high precision, high integrated direction, micro structure on the surface of aerospace manufacturing, electronics manufacturing, electrical, medical and other high-end industries have been more and more widely used. With the continuous breakthrough in manufacturing technology and process has become more complicated, how to ensure the accuracy of the proposed new manufacturing the challenge to modern detection, and high precision measurement has become a guarantee of micro nano machining quality the only effective method. The modern micro nano manufacturing especially for ultra precision diamond cutting technology constantly showing new features, processing of the micro nano structure morphology from the original simple one-dimensional development into three-dimensional structure, with a cross scale. The characteristics, longitudinal complicated however: 1) the existing high precision measurement system of micro structure measurement on different characteristics of care for this and lose that complex, large areas can not be achieved at the same time, the large range, high precision and fast measurement The amount, it is more important for some complex and unpredictable micro nano structure exists is not measured, technical problems of uncertainty; 2) most of the existing redundancy and complex high precision measurement system, demanding environment, can not be extended to the limited space, environmentdiversification micromachining process, which can only be used for off-line measurement, which needs to be remove the workpiece from the processing site, due to the two clamping errors, interrupted the follow-up processing; 3) measurement in the existing measuring methods are mostly limited to the local profile, micro nano surface scanning structure of the whole 3D complex there are still bottlenecks; 4) because of the uncertainty factors of micro nano processing the scene, true and reliable evaluation of surface measurement results, further study the quality measurement and processing to achieve organic integration of micro nano machining surface. This thesis focuses on the control of micro nano machining precision and quality of products Control requirements, fast measurement technique from a wide range of unpredictable structure, integrated measurement system, the complex three-dimensional micro structure in the spiral space measurement method, application of ultra precision single point diamond cutting process and many other aspects of a series of innovative methods and solutions, the key technology of the system form, and developed with independent intellectual property for ultra precision diamond machine measurement instruments and equipment, the successful implementation of the complex micro structure of 3D high precision measurement and error evaluation feedback, effectively protect the precision diamond cutting of micro nano structure. This thesis is divided into following six chapters: the first chapter outlines the research background of micro nano manufacturing technology, pointed out the development trend of micro nano structure complicated and rapid high precision measurement of micro nano manufacturing. The significance of the main The flow of the micro nano structure measurement instrument and made a brief overview of advantages and disadvantages, the scanning probe microscope in micro nano validity test. Describe the domestic and foreign research status of micro nano measuring field structure at present, points out that the uncertainty measurement of micro nano structure facing the measuring speed of technical problems, and the importance of the reign of the measurement, and summarizes the main research content and significance. The second chapter in nano micro positioning in machine tool in micro nano processing structure with large area and high precision scanning test and scanning probe needs, design a new type of piezoelectric ceramic drive has two degrees of freedom micro nano positioning platform multistage amplifier, precision the motor platform cost is high, the return error is avoided, the dynamic response is low, a series of problems. The concept of assembly error from the "micro gripper", the design of bending amplification platform through Z shaped guide amplification mechanism Finally the two degrees of freedom motion transmission and decoupling guidance, so that the sample of large area scanning test and scanning probe micro nano positioning in the machine tool can be developed. The third chapter probe scanning tunneling effect based on the proposed fast servo probe measurement technique based on skew symmetric transformation, effectively solve the deep groove slot are structure measured fast, technical problems of uncertainty. Embedded into the micro machining process of diamond cutting knife in the processed fast measurement, by measuring the results of feedback processing, morphology of diamond array has been ensured. The experimental results show that the fast servo measurement probe and research in measurement technology plays an important role in micro cutting structure and morphology control. The fourth chapter is put forward for ultra precision single point diamond cutting measurement technology and high aspect ratio Probe the automatic adjustment of the strategy; puts forward the space in the spiral measurement method, the probe can be realized on the base of three-dimensional micro nano structure surface normal vector tracking, facial reconstruction through facial contour reached excellent traditional off-line instruments are difficult to obtain, and can accurately characterize the three-dimensional micro nano machining error structure. The fifth chapter in the micro nano structure characterization of high precision detection error, demand high reliability, considering the influence of machining error and measurement error on the evaluation result of profile error, established in the incorporation of processing error evaluation model based on Monte Carlo algorithm gate, and verified by experiments. Finally, the proposed measurement system in spiral fast servo measurement probe with the fast tool servo machining system is formed by the fusion of collaborative work based on the mode of manufacturing and processing - measurement feedback compensation processing In the sixth chapter, the main work, innovation and key technology of this paper are summarized, and the research on the in-situ measurement of the micro manufacturing process is prospected.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TQ163
【相似文献】
相关期刊论文 前10条
1 吴敏镜;;关于金刚石切削在仪表制造中的应用[J];磨床与磨削;1988年01期
2 王明翠,于忠;特型金刚石切削具研制与试验[J];中国非金属矿工业导刊;1998年03期
3 吴敏镜;;金刚石切削的现状与发展[J];新技术新工艺;2006年01期
4 ;用化学法在工具上镀镍-金刚石切削层[J];超硬材料工程;2009年03期
5 王昊;;影响单点金刚石切削表面质量的因素[J];新技术新工艺;2014年01期
6 谈耀麟;金刚石切削工具发展前景述评[J];珠宝科技;2004年01期
7 谈耀麟;CVD金刚石切削工具[J];珠宝科技;2004年04期
8 L、E、Hibbs,JR;D.G·Flom;鸣午;;地热钻头用压结金刚石切削具的研究[J];国外地质勘探技术;1983年11期
9 王景贺,陈明君,董申,张龙江;KDP晶体单点金刚石切削脆塑转变机理的研究[J];光电工程;2005年07期
10 周明,,董申,袁哲俊;金刚石切削中工件材料的微观性能对切削表面质量的影响[J];航空工艺技术;1996年05期
相关博士学位论文 前1条
1 朱吴乐;金刚石切削微纳结构的高精度在位测量关键技术研究[D];浙江大学;2016年
相关硕士学位论文 前2条
1 谢飞;金刚石切削模具钢磨损机理的分子动力学仿真[D];大连理工大学;2016年
2 包琼琼;基于复杂曲面的超精密金刚石切削技术研究[D];浙江理工大学;2013年
本文编号:1663344
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1663344.html