随钻声波井径检测仪的控制系统设计与研究
发布时间:2018-03-31 00:26
本文选题:随钻测井径 切入点:换能器 出处:《长江大学》2013年硕士论文
【摘要】:随着国民经济发展对能源的依赖程度将越来越大,能源已成为直接影响国家安全、社会稳定和经济建设的重要战略资源。石油作为能源的主要组成部分,其重要性不言而喻。在石油的开采过程中,测井是不可缺少的环节。如何低成本、高效率地测井一直以来都是石油企业所共同追求的目标。 由于随钻测井与传统的电缆测井相比具有测井信息更准确、经济效益更好、实时性更强等特点,在目前国外的石油开采中,海上裸眼井的测量几乎都采用随钻测井技术来完成;在很多陆地的油田中,现有的电缆测井技术由于在应用中存在着很大的风险,一般也都用随钻测井技术来完成裸眼井的测量。然而,国内对随钻测井的研究起步较晚,目前还没有具有完全自主知识产权的随钻测井仪器。因此,对随钻测井技术的研究具有重要的现实意义和明显的应用价值。 本文主要研究随钻声波测裸眼井的井径,根据裸眼井的径井数据,便可以开展后续的固井等相关的决策工作。 本文第1章绪论部分介绍了随钻测井技术研究的目的和意义以及国内外发展状况;第2章测量原理部分介绍了超声波的特性以及超声波测井径的测量原理,并阐述了本课题的难点;第3章回波检测方法与数据处理部分介绍了回波检测的两种方法以及对应的数据处理算法,并比较了两种方法的优劣;第4章控制系统设计与实现部分是本文中的重点,在该部分,首先介绍了仪器对控制系统的要求,紧接着根据控制要求介绍了基于FPGA的控制系统设计的总体框架以及FPGA、 DSP、AD的选型。然后详细地介绍了FPGA中7个模块的设计与实现,并给出了各模块的仿真结果图;第5章介绍了调试过程及调试结果,第6章对本课题进行了总结,并提出了几点展望。 在本文中,运用了超声波速度、传播时间和传播距离这三者之间的关系进行井径的测量,即在已知超声波的传播速度的情况下,通过检测并记录换能器接收到的回波时间,计算出井径信息。考虑到测量精度和后续能否根据实际需要获取更多的油井信息这一情况,本文中采用的回波检测方法是全波列检测,并且对回波信号进行数字化后再做匹配相关等处理,进而获得回波时间,并计算出井径信息。本文重点介绍了基于FPGA的控制系统的设计与实现,基于FPGA的控制系统设计主要包括7个大的模块设计,分别是状态机模块、激励信号模块、AD数据采集模块、DA转换模块、命令解释模块、串行通讯接口(简称SCI)模块、和节能模块。其中,激励部分产生激励信号和多路选择器的控制信号,激励信号经过激发电路后激励换能器发出超声波,多路选择器控制4个超声换能器回波的选通通道。AD数据采集模块包括了FIFO的设计和AD芯片的控制,该模块根据命令为AD芯片提供转换的时钟信号和片选信号,并将AD转换后的数据经过串转并后缓存到所设计的FIFO中。DA模块为DA芯片提供转换时钟和写时钟,转换后的数据作为压控放大器的输入电压,从而控制回波信号的放大倍数。命令解释模块负责接收井上的命令,并将命令生成事先约定好的二进制数送给状态机,同时根据命令完成井径信息的传输。SCI模块完成DSP和FPGA之间的通讯。这些模块间的协调工作都由状态机统一控制,通过最后的实验调试结果的分析,证明了设计的正确性与合理性。
[Abstract]:With the development of national economy depends on the energy sources will become increasingly large, energy has become a direct impact on national security, an important strategic resource for social stability and economic development. The oil as the main component of energy, its importance is self-evident. In the process of drilling, logging is an indispensable link. How low cost, efficient logging petroleum enterprises has always been the common pursuit of the goal.
With the wireline logging compared with conventional logging with more accurate information, better economic benefits, more real-time characteristics, in the current foreign oil exploitation, marine measurement borehole almost all using LWD technology to complete the land; in many fields, the existing cable logging technology in in the application there is a great risk, generally using LWD Technology to complete the measurement borehole. However, the domestic research of late with the drilling and logging has not started, with completely independent intellectual property rights of LWD. Therefore, the research on MWD logging technology has important practical significance and the obvious application value.
In this paper, the diameter of the open hole well is measured with the sound wave. According to the data of the open hole well, the subsequent related decision work, such as cementing, can be carried out.
The first chapter introduced the study of LWD technology as well as the purpose and significance of development at home and abroad; the second chapter introduces the measuring principle of the measuring principle of the ultrasonic characteristics and ultrasonic logging diameter, and illustrates the difficulty of this topic; the third chapter echo detection method and the data processing part introduces two methods of echo detection and corresponding data processing algorithms, and compares the advantages and disadvantages of two methods; the fourth chapter design and Realization of control system is the key part of this paper, in this part, first introduced the instrument to control the system, then according to the control requirements of FPGA introduced the overall framework design of the control system and FPGA based on DSP, AD, the selection. And then describes in detail the design and Realization of 7 modules in FPGA, and gives the simulation results of each module; the fifth chapter introduces the debugging process and The result of debugging, the sixth chapter is a summary of the subject, and some prospects are put forward.
In this paper, the use of ultrasonic velocity, the relationship between the propagation time and the propagation distance of the three caliper measurements, known ultrasonic propagation velocity, the echo time detecting and recording the transducer received, calculate the borehole diameter information. Considering the measurement accuracy and follow-up can according to this a more well information needs, echo detection method is adopted in this paper to do the full wave detection, matching processing and the echo signal is digitized, and then get the echo time, and calculate the hole diameter information. This paper introduces the design and Realization of control system based on FPGA, the design of control system FPGA consists of 7 major modules are designed based on state machine module, excitation signal module, AD data acquisition module, DA conversion module, command interpretation module, serial communication interface. Port (SCI) module, and the energy saving module. Among them, the incentive on the part of the excitation signal and generates a control signal multiplexer, excitation signal after excitation circuit to emit ultrasonic transducer excitation, multiplexer control 4 ultrasonic transducer echo gated channel.AD data acquisition module includes the design of FIFO and AD chip, the module according to the commands for AD chip provides the clock signal and the chip selection signal conversion, and the.DA module AD conversion data through serial and cache to the designed FIFO DA chip provides the conversion clock and write clock, the converted data as the input voltage of the voltage controlled amplifier, amplification to control echo signal. Command interpretation module is responsible for receiving well on command, and the command generates a binary number agreed in advance to the state machine, at the same time according to the transmission of.SCI command completed wells size information The module completes the communication between DSP and FPGA. The coordination between these modules is controlled by state machine. The correctness and rationality of the design is proved through the analysis of the final experimental debugging results.
【学位授予单位】:长江大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TE927.9
【参考文献】
相关期刊论文 前10条
1 黄万伟,邵高平,李建新;测井声波首波检测及其相关性校正[J];测井技术;2005年02期
2 鞠晓东,成向阳,卢俊强,乔文孝;基于CPLD的井下控制命令电路设计及其应用[J];测井技术;2005年04期
3 冯学良;刘震;石星;;基于相关算法的脉冲信号检测性能分析[J];电讯技术;2008年07期
4 贾子申;李淑清;王冠雅;;基于FPGA的UART控制器设计[J];电子测量技术;2008年03期
5 牛林林;张小兵;李海龙;李西宁;王建华;;随钻测井的现状与展望[J];国外测井技术;2008年06期
6 石元会;刘志申;葛华;阳飞;;国内随钻测量技术引进及现场应用[J];国外测井技术;2009年01期
7 张宝坤;;基于FPGA的随钻声波测井仪控制和数据存储系统研究[J];中国石油和化工标准与质量;2012年06期
8 王栋;;声波信号在测井中的影响及应用[J];石油和化工设备;2009年10期
9 杨卫平;王关祥;车晓波;;大直径超声测井仪数据处理技术的研究[J];工矿自动化;2006年05期
10 阮玉柱;陈凡;胥召;陈鸿傲;;超声波测径在钻井过程中的应用[J];内蒙古石油化工;2010年23期
,本文编号:1688345
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1688345.html