无人驾驶城轨车辆运动分析与控制策略研究
本文选题:无人驾驶 + 城轨车辆 ; 参考:《兰州交通大学》2014年博士论文
【摘要】:目前,轨道交通无人驾驶技术在国外发达国家的研究已日趋成熟,而我国无人驾驶技术的研究起步较晚,水平相对落后。由于我国大部分轨道交通列车的核心设备技术及运营模式是从国外引进的,存在“水土不服”的问题,例如,车辆在站停留时间不能根据客流量动态调整、行车间隔不智能,城轨车辆“常与地面失去联系”等,已在很大程度上影响了城轨车辆无人驾驶技术在我国的发展速度。存在这些问题的原因,主要是因为我国在城轨车辆无人驾驶“控制系统”方面还缺乏自主知识产权的核心技术,特别是在该领域相关基础理论研究方面严重滞后,成为制约我国城轨交通无人驾驶发展水平的主要瓶颈。针对我国实际国情,开展城轨车辆无人驾驶技术基础理论特别是控制策略方面的研究,对消除人为等不确定因素给城轨车辆运行的安全性、平稳性和高效性带来的潜在危害和不利影响,提高城轨交通系统无人驾驶车辆的自动化控制水平,具有十分重要的理论和现实意义。本文以无人驾驶城轨车辆为研究对象,以列车牵引运动学和动力学为基础,通过对车辆牵引运动、横向和垂向振动建模与分析,引入鲁棒控制理论对车辆振动进行控制分析与综合,建立符合无人驾驶城轨车辆混合优化控制策略,并对城轨车辆协同控制技术、以及如何实现多列车高效运行的控制目标进行了相关分析。其主要研究内容为:(1)以列车牵引运动学为基础,通过对无人驾驶城轨车辆在不同工况下的牵引运行过程进行受力分析,建立城轨列车牵引运动学模型,并给出列车运动学方程。(2)以列车动力学理论为基础,通过对运行列车动力学分析,建立车辆相关多自由度横向、垂向振动模型,利用Matlab对模型进行仿真分析,研究列车运行过程中影响其平稳性的相关因素。(3)为抑制列车运行过程中的不确定干扰对城轨车辆造成的影响,在建立车辆横向振动模型基础上,分析扰动等不确定因素对列车造成的影响,建立横向振动广义对象模型,引入鲁棒H∞控制理论对其进行控制分析与综合,并将控制前、后结果进行对比,验证引入鲁棒控制后控制效果的合理性和有效性。仿真结果表明,与被动悬架控制技术相比较,无人驾驶城轨列车在速度较高的情况下,引入鲁棒控制器后可明显抑制车辆的横向振动、提高列车运行的平稳性和舒适性。(4)在城轨列车多质点运动模型的基础上,通过对节能牵引控制策略和快速牵引控制策略的分析,针对城轨车辆的两种运行模式,建立了城轨车辆混合优化牵引控制策略,通过建模和仿真分析,寻找出牵引运行过程最佳决策量,实现牵引运行过程中能耗的最低和全程运行时间的最短。(5)通过对城轨车辆运营模式和无人驾驶技术特点的调研和分析,针对我国城轨交通客流量波动大的特点,提出了无人驾驶城轨车辆运营过程中分时段配置列车数量的思路,并以某条城轨线路上的列车为对象、以客流量为依据,利用排队论思想给出了分时段列车数量配置和优化的方法。在此基础上,建立了城轨车辆协同控制模型,通过采用实时信息采集方法来实现列车的等间隔协同控制。利用二次型最优控制理论来得到下一信息采集间隔时间内车辆行进的距离,并对列车协同控制中最优运行间隔进行了计算和讨论。利用物联网技术搭建多列车协同控制条件下实时交互技术框架,建立分层递阶控制模型,为通过列车牵引控制策略来实现多列车间动态协同控制的研究奠定基础。
[Abstract]:At present, the research on unmanned driving technology in rail transit has become more and more mature in developed countries. However, the research on pilotless technology in China started relatively late and the level is relatively backward. Because the core equipment technology and operation mode of most rail transit trains in our country are imported from abroad, there is a problem of "water and soil", for example, vehicles are in The stop time of the station can not be adjusted dynamically according to the passenger flow, the interval of driving is not intelligent, the urban rail vehicles "often lose contact with the ground" and so on, which has greatly influenced the development speed of the unmanned driving technology of urban rail vehicles in our country. The reasons for these problems are mainly because of the "control system" of the unmanned driving of urban rail vehicles in our country. It also lacks the core technology of independent intellectual property rights, especially in the field of basic theory research in this field, which has become the main bottleneck restricting the development level of urban rail traffic unmanned driving in our country. In view of the actual conditions of China, the research on the basic theory of unmanned driving technology of urban rail vehicles, especially the control strategy, is eliminated. It is of great theoretical and practical significance to improve the safety, stability and efficiency of urban rail vehicles and improve the level of automatic control of unmanned vehicles in urban rail transit system. And on the basis of dynamics, through the modeling and analysis of vehicle traction, lateral and vertical vibration, the robust control theory is introduced to control analysis and synthesis of vehicle vibration, and a hybrid optimization control strategy for unmanned urban rail vehicles is established, and the cooperative control technology for urban rail vehicles and how to control the efficient operation of multiple trains is also established. The main research contents are as follows: (1) on the basis of the train traction kinematics, through the force analysis of the unmanned urban rail vehicles in different working conditions, the traction kinematics model of the urban rail trains is established and the train movement learning equation is given. (2) the train dynamics theory is based on the theory of train dynamics. To analyze the dynamic train dynamics, establish the vehicle related multi degree of freedom lateral and vertical vibration model, make use of Matlab to simulate the model, and study the related factors that affect the stability of the train during the train operation. (3) in order to restrain the influence of the uncertain interference on the urban rail vehicles during the train operation, the lateral vibration of the vehicle is established. On the basis of the model, the influence of the uncertain factors such as disturbance to the train is analyzed, the generalized object model of lateral vibration is established, and the robust H control theory is introduced to control analysis and synthesis, and the results are compared before and after the control. The validity and validity of the control effect after the introduction of the robust control are verified. Compared with the dynamic suspension control technology, under the condition of high speed, the unmanned urban rail train can obviously restrain the lateral vibration of the vehicle and improve the smoothness and comfort of the train. (4) on the basis of the multi particle motion model of the urban rail train, the energy saving traction control strategy and the fast traction control strategy are passed through. In view of the two operating modes of urban rail vehicles, a hybrid optimization traction control strategy for urban rail vehicles is established. Through modeling and simulation analysis, the optimal decision of the traction operation process is found. The minimum energy consumption and the shortest run time in the traction operation are achieved. (5) through the operation mode of urban rail vehicles and unmanned driving. According to the investigation and analysis of the technical characteristics, in view of the characteristics of the large passenger flow fluctuation in urban rail traffic in China, the train of thought of configuring the number of trains during the operation process of unmanned urban rail vehicles is put forward. The train number on a city rail line is taken as the object. Based on the passenger flow, the train number allocation and optimization are given by the queue theory. On this basis, the cooperative control model of urban rail vehicles is set up, and the coordinated control of the train is realized by using the real-time information collection method. The two times optimal control theory is used to get the moving distance of the vehicle in the next information collection interval, and the optimal operation interval in the coordinated control of the train is calculated. By using the technology of Internet of things to build a real-time interactive technology framework for multi train cooperative control, a hierarchical hierarchical control model is established, which lays the foundation for the study of dynamic cooperative control among multiple trains through train traction control strategy.
【学位授予单位】:兰州交通大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:U270.1
【相似文献】
相关期刊论文 前10条
1 刘潇;;城轨车辆轮椅位设计[J];电力机车与城轨车辆;2009年05期
2 王曰凡;上海城轨车辆技术特点与发展前景[J];电力机车与城轨车辆;2004年04期
3 薛淑胜;;城轨车辆可靠性的分配和预测[J];现代城市轨道交通;2007年05期
4 秦永贞;刘英;;酚醛玻璃钢在城轨车辆司机台上的应用[J];沿海企业与科技;2012年07期
5 刘和平;丁宝英;;城轨车辆车钩高度调整研究[J];沿海企业与科技;2012年11期
6 陈剑波;;城轨车辆低压供电调试常见问题分析[J];科技创新与应用;2013年13期
7 赵力锐;长春轨道客车股份有限公司近期开发多种城轨车辆[J];机车电传动;2002年03期
8 罗情平;;酚醛玻璃钢在城轨车辆上的应用[J];铁道车辆;2011年06期
9 杜求茂;陈中杰;彭驹;;城轨车辆辅助供电系统的比较分析[J];电力机车与城轨车辆;2011年04期
10 龚伟申;;喷汽增焓技术在城轨车辆空调供热中的应用分析[J];城市轨道交通研究;2011年07期
相关会议论文 前3条
1 许晓阳;;动车及新型城轨车辆淋雨装置设计概论[A];第八届中国智能交通年会论文集[C];2013年
2 吴英帅;;全自动车钩电气系统在城轨车辆上的应用[A];2008年中国铁道学会牵引动力学术年会——动车组、大功率交流传动机车研讨会论文集[C];2008年
3 肖彦君;吴茂杉;;城轨车辆VVVF逆变器与牵引电机的功率选定及其相互匹配[A];铁道科学技术新进展——铁道科学研究院五十五周年论文集[C];2005年
相关重要报纸文章 前7条
1 本报记者 苏民;中国北车瞄准城轨车辆高端市场[N];经济日报;2008年
2 王淑君 刘敏 张毋左;城轨车辆制造:整车梦圆[N];常州日报;2014年
3 记者 杨建光 通讯员 韩军 颜常青;我国首列低碳静音城轨车辆下线[N];人民铁道;2010年
4 本报记者 石峰 通讯员 韩军 颜常青;我国首列低碳静音城轨车辆成功下线[N];中国工业报;2010年
5 南方;国内首个铝合金城轨车辆自主化[N];中国有色金属报;2007年
6 陈光明;中新企业联手建城轨车辆厂[N];中国有色金属报;2006年
7 王振满 顾宁先 林婕;南京将打造国内最大城轨车辆基地[N];江苏科技报;2006年
相关博士学位论文 前1条
1 孟建军;无人驾驶城轨车辆运动分析与控制策略研究[D];兰州交通大学;2014年
相关硕士学位论文 前10条
1 邵杨;城轨车辆品牌视觉形象设计方法及其应用研究[D];西南交通大学;2013年
2 丁一;城轨车辆电气设备检修管理信息系统研究与实现[D];中南大学;2012年
3 柳海;城轨车辆悬挂系统故障诊断方法研究[D];北京交通大学;2013年
4 张琳晓;城轨车辆车体称重调载系统研究[D];中南大学;2010年
5 刘蓉;城轨车辆设备维修策略优化与决策模型[D];北京交通大学;2010年
6 俞秀莲;基于信息融合的城轨车辆走行系故障诊断[D];南京理工大学;2014年
7 汤礼鹏;城轨车辆切削式专用吸能装置研究[D];中南大学;2010年
8 李兰;城轨车辆耐碰撞结构设计及其乘员安全数字仿真研究[D];铁道部科学研究院;2007年
9 邓睿康;铰接式城轨车辆动力学性能研究[D];西南交通大学;2014年
10 张立学;城轨车辆称重找平方法的理论研究与软件实现[D];西南交通大学;2013年
,本文编号:1932053
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1932053.html