前路经寰枢关节锁定钛板螺钉内固定系统三维稳定性和安全性的实验研究
发布时间:2018-06-08 20:08
本文选题:寰枢椎不稳 + 前路 ; 参考:《南方医科大学》2014年硕士论文
【摘要】:寰枢椎不稳是指寰枢椎结构遭受外伤、畸形、肿瘤、炎症破坏,丧失了正常的生理功能和稳定性,导致寰枢椎脱位或半脱位,合并或继发脊髓、神经根或椎动脉的刺激及压迫症状。造成寰枢椎不稳的原因有:①先天性异常:如寰枢椎发育不良,齿状突畸形,椎间关节和韧带结构的松弛、缺失或不对称等;②创伤性:车祸、高处坠落伤致寰-枢椎体部骨折、寰-枢椎半脱位、Jefferson骨折、Hangman骨折、齿状突骨折、陈旧性创伤致齿状突假关节形成、急性韧带损伤导致真性脱位、慢性韧带损伤等;③病理性:类风湿关节炎、强直性脊柱炎、上颈椎结核等;④肿瘤病变;⑤退行性疾病:骨关节炎等。其中以创伤性寰枢椎不稳最常见。寰枢椎不稳的临床表现:①枕颈部疼痛;②斜颈;③颈髓、延髓损伤:瘫痪,呼吸困难甚至造成生命危险;④椎动脉损伤:影响脑部供血;⑤神经根损伤:神经支配区域相应的体征;⑥病程长者,可有缓慢的进行性的肩胛带、上肢及手内在肌萎缩。寰枢椎不稳具有严重的危险性,易引起上颈髓、神经根、椎动脉受压的症状和体征,可致四肢瘫痪,甚至危及生命,因此常常需手术治疗。寰枢椎不稳定目前临床手术分为后路和前路内固定。其中后路手术主要有:寰枢椎椎板下钢丝技术、椎板夹技术、Magerl关节螺钉技术、后路寰椎侧块枢椎椎弓根钉棒技术。其中早期使用的寰枢椎椎板下钢丝技术、椎板夹技术生物力学性能差,寰椎后弓要求完整,固定不可靠;Magerl关节螺钉技术及后路寰椎侧块枢椎椎弓根钉棒系统力学性能改善,固定可靠,但其对上颈椎先天性后侧骨性结构的缺失、医源性后路骨性结构切除、寰枢椎位置及大小的解剖学变异等病例,后路手术难以进行,需选择前侧入路手术。同时,后路手术对来自脊髓前方的压迫或粘连无能为力,需前路手术减压或松解,一期或二期后路内固定,术中翻身可能造成致命的脊髓损伤,同时也增加了患者的住院费用。前路手术过去主要应用于寰枢椎后侧骨性结构缺失或椎动脉异常而不适合施行后路手术治疗的患者,但经过近年的发展,现已用于各种寰枢椎不稳定,而且具有后路手术不具备的优势。前路经口咽寰枢椎钛板内固定术在内固定的同时可进行前侧松解及减压,临床已广泛用于新鲜及陈旧性创伤性寰枢椎不稳,并取得了一定的疗效。但其致命不足在于该手术是在污染的情况下操作,容易感染,且术中一旦损伤硬脊膜,造成脑脊液漏,感染将难以控制甚至危及生命。因此,对于前路手术,颌下入路成为一种新选择,但目前尚无满意的内固定器械。如经枢椎椎体寰椎侧块螺钉内固定,其进钉时需较大后倾角,容易损伤脊髓与椎动脉,且对枢椎椎体完整性要求较高。寰枢椎前路经关节螺钉内固定,钉道在枢椎体和寰椎侧块中由前内向后外走行,可避免向内穿入椎管损伤脊髓,与椎动脉毗邻不密切,损伤脊髓或椎动脉的风险降低。寰枢椎前路经关节螺钉内固定术目前在我院已推广,取得了较为满意的效果,但该技术的生物力学性能有待进一步提高,而且对枢椎前侧骨质要求高,若为骨质疏松,螺钉易松动脱出,操作困难,寰椎侧块粉碎性骨折者不适宜应用此术式。前路经寰枢关节锁定钛板螺钉内固定系统是我们研制的具有自主知识产权的寰枢椎前路内固定系统(专利号:ZL 2011 2 0134687.X),该系统有复位及锁定功能,采用颌下手术入路,在前路松解、减压的同时行一期内固定,简化了手术操作,增强了内固定的可靠性。本课题通过建立该系统的手术模型,观察此内固定系统与寰枢椎复合体的吻合程度,测定新鲜颈椎标本在失稳条件下行前路经寰枢关节锁定钛板螺钉内固定后前屈、后伸、左右侧弯、左右旋转方向的运动范围,探讨失稳寰枢椎行此内固定的三维稳定性和安全性,为前路经寰枢关节锁定钛板螺钉内固定术在临床上的推广应用提供理论依据。第一部分前路经寰枢关节锁定钛板螺钉内固定系统的三维稳定性研究目的通过在新鲜颈椎尸体标本上进行模拟手术,然后在脊柱三维运动机上进行力学实验来评价前路经寰枢关节锁定钛板螺钉内固定治疗寰枢椎不稳的三维稳定性,从而为该内固定术式在临床上的推广应用提供生物力学依据。方法8具意外死亡的成年男性颈椎新鲜标本,排除各项颈椎疾患,取材后剔除颈部肌肉组织,保留完整的韧带和关节囊,制成枕骨至颈4椎体(C0~C4)完整状态的实验标本。用聚甲基丙烯酸甲酯(牙托粉)包埋,上方包埋至C0,下方包埋至c4,放于-20℃的冰箱中保存备用。8具标本分别编号,对每具标本分别进行完整状态、齿状突Ⅱ型骨折、前路经寰枢关节锁定钛板螺钉固定、后路寰枢椎椎弓根螺钉固定四种状态下的三维运动范围测定。每具标本先进行正常状态下的三维运动范围测定,再将标本造成寰枢椎不稳定(齿状突Ⅱ型骨折),测试标本在齿状突Ⅱ型骨折状态下的三维运动范围。再对每一标本分别行前路经寰枢关节锁定钛板螺钉固定和后路寰枢椎椎弓根螺钉固定,并测定在不同状态下的三维运动范围。为消除同一标本由于固定方式的先后顺序对实验结果造成的影响,前、后路固定的先后顺序随机进行。生物力学测试标本的三维运动测试在非破坏方式下在脊柱三维运动试验机Spine2000(精确度0.01Nm)上进行,标本定标后,施加2.0Nm的纯力偶矩。通过对标本加载、卸载载荷2.0Nm,测量标本不同状态下的前屈、后伸、左侧弯、右侧弯及左、右旋转等6个运动方向的运动幅度。各方向加载3次,前2次为消除蠕变影响,第3次精确测量各运动方向的角度位移作为基准值,从而确定标本的运动范围(range of motion,ROM)。由激光三维扫描仪扫描寰枢椎在零载荷至最大载荷状态下的运动情况,记录并输入计算机,分别计算出正常、齿状突Ⅱ型骨折、前路经寰枢关节锁定钛板螺钉固定及后路寰枢椎椎弓根螺钉固定的ROM。结果前路经寰枢关节锁定钛板螺钉固定和后路寰枢椎椎弓根螺钉固定的寰枢椎三维运动范围明显小于正常状态和齿状突Ⅱ型骨折状态(P0.000);齿状突Ⅱ型骨折组寰枢椎的前屈、后伸、左右侧弯及左右旋转运动范围较正常组有显著性差异(P0.000)。前路经寰枢关节锁定钛板螺钉固定和后路寰枢椎椎弓根螺钉固定的寰枢椎三维运动范围无显著统计学差异(前屈P=0.930,后伸P=0.952,左右侧弯P=0.947,左右旋转P=0.950)。前路经寰枢关节锁定钛板螺钉固定和后路寰枢椎椎弓根螺钉固定在前屈、后伸、左右侧弯及左右旋转的ROM稳定指数均无显著差异(P0.05),二者的三维稳定性均较好。但前路经寰枢关节锁定钛板螺钉固定的寰枢椎三维运动范围较后路寰枢椎椎弓根螺钉固定稍大。结论前路经寰枢关节锁定钛板螺钉内固定的寰枢椎三维运动范围均明显小于正常和齿状突Ⅱ型骨折(P0.000),与后路椎弓根螺钉固定的寰枢椎三维运动运动范围无统计学差异。前路经寰枢关节锁定钛板螺钉内固定术后的前屈运动范围为(1.39±0.26)。,后伸运动范围为(1.40±0.22)。,侧弯运动范围为(1.43±0.23)。,旋转运动范围为(1.77±0.34)。,能即刻稳定寰枢椎复合体,明显减小寰枢关节各方向的运动范围,具有良好的生物力学性能。第二部分前路经寰枢关节锁定钛板螺钉内固定系统的解剖学安全性研究目的通过在新鲜颈椎失稳标本行前路经寰枢关节锁定钛板螺钉内固定模拟手术,并分析术后经CT三维重建获得的解剖测量数据,评价此内固定系统在临床应用方面的解剖学安全性。方法8具意外死亡的成年男性颈椎新鲜标本,经同前处理后,行前路经寰枢关节锁定钛板螺钉内固定模拟手术(具体过程见前),术毕用多层螺旋CT(MSCT)对8具手术模型行2.0mm层厚扫描,将获取的原始数据传至Vitrea 2工作站行CT三维重建技术中的多平面重建(MPR)和容积重建(VR),多平面重建(MPR)后的图像用Vitrea 2工作站自带的测量软件测量不同平面上经寰枢关节螺钉与椎动脉及脊髓的距离、钉尖距寰椎侧块上关节面的距离,同时行数字化摄影(DR),分析前路经寰枢关节锁定钛板螺钉内固定系统临床应用的解剖学安全性。结果前路经寰枢关节锁定钛板螺钉内固定术后X线片检查显示锁定钛板与枢椎体吻合良好,螺钉均在骨质内,未进入椎管和横突孔。多层螺旋CT(MSCT)扫描结果显示在横截面A(寰椎横突孔上缘)经寰枢关节螺钉距椎动脉(椎管壁)和脊髓(横突孔内侧壁)最近,分别为(5.35±1.02)mm和(8.55±0.93)mm,与寰椎侧块上关节面距离为(3.45±0.64)mm;横截面B(寰椎横突孔下缘)螺钉与椎动脉和脊髓的距离分别为(5.55±0.99)mm和(8.15±1.03)mm。横截面C(枢椎上关节面下缘)螺钉与椎动脉和脊髓的距离分别为(9.75±1.21)mm和(10.95±1.02)mm。结论前路经寰枢关节锁定钛板螺钉内固定系统能即刻稳定寰枢椎复合体,在寰枢椎骨质内有足够的置钉空间,未伤及椎动脉和脊髓;采用前路经寰枢关节锁定钛板螺钉内固定系统行寰枢椎固定在解剖上是安全可行的,所以前路经寰枢关节锁定钛板螺钉内固定系统在临床应用的安全性良好。
[Abstract]:Atlantoaxial instability refers to the atlantoaxial structure suffering from trauma, malformation, tumor, inflammatory destruction, loss of normal physiological function and stability, leading to atlantoaxial dislocation or subluxation, combined or secondary spinal cord, nerve root or vertebral artery irritation and compression symptoms. Good, odontoid deformity, relaxation, loss or asymmetry of the structure of the intervertebral joints and ligaments; (2) traumatic: accident, the atlantoaxial fracture, atlantoaxial subluxation, Jefferson fracture, Hangman fracture, odontoid fracture, odontoid false joint formation, acute ligamentous dislocation, chronic toughening, and chronic toughening of acute ligament injury. Histopathological: rheumatoid arthritis, ankylosing spondylitis, upper cervical tuberculosis and so on; (4) tumor lesions; (5) degenerative disease: osteoarthritis. Among them, traumatic atlantoaxial instability is the most common. The clinical manifestations of atlantoaxial instability: (1) occipital and cervical pain; (2) torticollis; (3) cervical spinal cord, medulla injury: paralysis, dyspnea Even cause the risk of life; (4) vertebral artery injury: affecting the blood supply of the brain; (5) nerve root injury: the corresponding signs in the innervation area; (6) a slow progressive scapula and internal atrophy of the upper and hand muscles. The atlantoaxial instability has a serious risk, and it is easy to cause the upper cervical spinal cord, nerve root, and vertebral artery compression. The shape and signs can cause paralysis of the extremities and even endanger life. Therefore, surgical treatment is often needed. The atlantoaxial instability is divided into the posterior and anterior internal fixation. The posterior operation mainly includes the atlantoaxial laminectomy wire technique, the laminar clamp technique, the Magerl joint screw technique, and the posterior atlantoaxial pedicle screw rod technique. The technical biomechanics of the atlantoaxial interlaminar steel wire used in the early middle period is poor, the posterior arch of the atlas is complete, and the fixation is unreliable. The mechanical properties of the Magerl joint screw technique and the posterior atlantoaxial pedicle screw rod system of the atlas are improved, and the fixation is reliable, but the iatrogenic nature of the congenital posterior lateral bone structure of the upper cervical spine is iatrogenic. Posterior approach is difficult to perform. Posterior approach is difficult to perform. Anterior approach is difficult to perform. At the same time, posterior surgery is not capable of compression or adhesion from the front of the spinal cord. Anterior decompression or release is required. One or two phases of the posterior approach are fixed, and the intraoperative turn over may cause a fatal ridge. Spinal cord injury, which also increases the cost of hospitalization. Anterior surgery was used mainly in patients with posterior atlantoaxial loss of bone structure or abnormal vertebral artery, which were not suitable for posterior surgical treatment. However, after recent development, it has been used for various atlantoaxial instability and has the advantages of no posterior operation. Atlas and atlantoaxial titanium plate fixation can be used for anterior lateral release and decompression, and it has been widely used in fresh and old traumatic atlantoaxial instability and has achieved a certain effect. But the fatal insufficiency is that the operation is operated under the condition of contamination and susceptible to infection, and once the dural membrane is damaged in the operation, the cerebrospinal fluid is caused. The infection will be difficult to control or even endanger life. Therefore, the submandibular approach is a new choice for anterior surgery, but there is no satisfactory internal fixator. For example, the internal fixation of the atlantoaxial lateral mass of the axis, which requires a larger obliquity, easily damages the spinal cord and vertebral artery, and requires a higher integrity of the axis of the axis. The anterior approach of the vertebral anterior approach through the internal fixation of the articular screw and the anterior internal direction of the axis and the lateral mass of the atlas can avoid intraspinal spinal cord injury and reduce the risk of injury to the spinal cord or the vertebral artery. The atlantoaxial anterior transarticular screw internal fixation has been popularized in our hospital and has achieved satisfactory results. However, the biomechanical properties of the technology need to be further improved, and the requirements for the anterior side of the axis are high. If the screws are loose, the screws are easy to loose and release, and the operation is difficult. The atlantoaxial joint locking titanium plate screw internal fixation system is the independent knowledge production we have developed. The right atlantoaxial anterior internal fixation system (patent number: ZL 20112 0134687.X), the system has the function of reduction and locking, using submandibular surgical approach, anterior loosening and decompression at the same time for internal fixation, simplifying the operation and enhancing the reliability of internal fixation. This subject is to observe the internal fixation system by establishing the operation model of the system. The degree of anastomosis with the atlantoaxial complex was made to determine the three-dimensional stability and safety of the unstable atlantoaxial fixation by the anterior flexion, extension, left and right lateral bending and the direction of rotation in the anterior approach of the atlantoaxial joint, which was fixed by the atlantoaxial joint locking titanium plate and screw. The application of plate screw internal fixation provides a theoretical basis for clinical application. Part 1 the three-dimensional stability of the anterior atlantoaxial locking titanium plate screw internal fixation system aims to evaluate the anterior atlantoaxial joint by mechanical experiments on the fresh cervical vertebra cadaver specimens. The three-dimensional stability of atlantoaxial instability was treated with locking titanium plate and screw fixation, thus providing a biomechanical basis for the clinical application of the internal fixation. Methods 8 fresh adult male cervical specimens, excluding all cervical diseases, were removed from the cervical spine, and the cervical muscles were removed and the intact ligaments and joint sacs were retained. The experimental specimens of the complete state of the occipital bone to the cervical 4 vertebral body (C0 ~ C4) were embedded with polymethyl methacrylate (denture powder), buried above the C0, and buried below the C4, and stored in the refrigerator of -20 C for preservation of the spare.8 specimens, respectively, for the complete state of each specimen, the odontoid type II fracture, and the anterior approach locking the titanium plate through the atlantoaxial joint. Measurement of three-dimensional motion range under four states of fixation and posterior atlantoaxial pedicle screw fixation. Each specimen is measured in a three-dimensional motion under normal condition, and then the specimen causes atlantoaxial instability (odontoid type II fracture), and the specimen is measured in the three-dimensional motion of the odontoid type II fracture. The anterior atlantoaxial locking titanium plate screw fixation and posterior atlantoaxial pedicle screw fixation were performed respectively, and the three-dimensional motion range was measured in different states. In order to eliminate the effect of the same specimen on the experimental results due to the order of fixation, the sequence of anterior and posterior fixation was carried out randomly. The biomechanical test specimens were carried out. The three-dimensional motion test is carried out on the spine three-dimensional motion test machine Spine2000 (accuracy 0.01Nm) under non destructive mode. After the specimen is fixed, the pure couple moment of 2.0Nm is applied. By loading the specimen and unloading the load 2.0Nm, the 6 motion directions, such as the forward flexion, the extension, the left side bend, the right bend and left, right rotation, are measured. Each direction is loaded 3 times, the first 2 times to eliminate the effect of creep, and the third time to accurately measure the angular displacement of each motion direction as the reference value, so as to determine the range of motion of the specimen (range of motion, ROM). The normal, odontoid type II fracture, the anterior approach through the atlantoaxial locking titanium plate screw fixation and the posterior atlantoaxial pedicle screw fixation, the anterior atlantoaxial locking titanium plate screw fixation and the posterior atlantoaxial pedicle screw fixation of the atlantoaxial motion are less than normal and odontoid type II fractures in the anterior approach of ROM.. There was a significant difference between the anterior flexion, extension, lateral bending and left and right rotation of the atlas and axis in the odontoid type II fracture group (P0.000). There was no significant difference between the three dimensions of the atlantoaxial three dimension movement in the anterior atlantoaxial locking titanium plate screw fixation and the posterior atlantoaxial pedicle screw fixation (anterior flexion P=0.930, later). P=0.952, left and right P=0.947, left and right rotation P=0.950). The anterior approach through the atlantoaxial locking titanium plate screw fixation and posterior atlantoaxial pedicle screw fixation in the anterior flexion, extension, left and right side bending and left and right rotation of the stability index of ROM were not significant (P0.05), the two of the three dimensional stability was better. But the anterior path through the atlantoaxial joint locking titanium plate screw The three-dimensional motion range of the atlantoaxial motion is slightly larger than that of the posterior atlantoaxial pedicle screw. Conclusion the three-dimensional motion range of the atlantoaxial motion in the anterior atlantoaxial locking titanium plate and screw is significantly smaller than that of the normal and odontoid type II fractures (P0.000), and the three-dimensional motion range of the atlantoaxial motion fixed with the posterior pedicle screw is not statistically significant. The range of anterior flexion movement after the atlantoaxial locking titanium plate screw internal fixation is (1.39 + 0.26). The extension movement range is (1.40 + 0.22). The range of lateral bending is (1.43 + 0.23). The range of rotation is (1.77 + 0.34). It can instantly stabilize the atlantoaxial complex and obviously reduce the range of movement in all directions of the atlantoaxial joint. It is good. Good biomechanical properties. The anatomical safety of the second part of the anterior atlantoaxial locking titanium plate screw internal fixation system objective to evaluate the internal fixation through the atlantoaxial locking titanium plate screw fixation on the front of the new cervical spine instability standard and to analyze the anatomical data obtained after the CT three-dimensional reconstruction and evaluate the internal fixation. Methods the anatomical safety of the system in clinical application. Methods 8 fresh adult male cervical specimens with accidental death were treated with anterior atlantoaxial locking titanium plate and screw internal fixation (prior to the procedure), and the 8 surgical models were scanned with 2.0mm layer thickness by multi-slice spiral CT (MSCT). The original number would be obtained. The images of multi plane reconstruction (MPR) and volume reconstruction (VR) and multiplane reconstruction (MPR) were reported to the Vitrea 2 workstation. The distance between the atlantoaxial screw and the vertebral artery and spinal cord on the different planes, the distance to the articular surface of the lateral mass of the atlas, and the numbers were measured at the same time. The images after the multiplane reconstruction (MPR) were measured by the Vitrea 2 workstation. The anatomical safety of the clinical application of the anterior atlantoaxial locking titanium plate screw internal fixation system was analyzed by chemical photography (DR). Results the X-ray examination of the anterior approach after the atlantoaxial locking titanium plate screw internal fixation showed that the locking titanium plate was in good agreement with the axis, and the screws were all inside the bone and did not enter the spinal canal and the transverse process. The multi-slice spiral CT (MSCT) scan was not used. The results showed that the cross section A (the upper margin of the transverse process of the atlas) was (5.35 + 1.02) mm and (8.55 + 0.93) mm through the atlantoaxial screw (vertebral canal wall) and the spinal cord (the medial wall of the transverse foramen), and the distance between the lateral mass of the atlas and the lateral mass of the atlas was (3.45 + 0.64) mm, and the distance between the screws of the transverse section of the transverse section of the atlas and the vertebral artery and the spinal cord was divided. The distance between (5.55 + 0.99) mm and (8.15 + 1.03) mm. cross section C (lower axis of the upper articular surface of the axis) and the distance between the vertebral artery and the spinal cord were (9.75 + 1.21) mm and (10.95 + 1.02) mm.. The anterior atlantoaxial locking titanium plate screw internal fixation system could instantly stabilize the atlantoaxial complex, and there was sufficient space for nailing in the atlantoaxial bone without injury. The anterior atlantoaxial locking titanium plate screw fixation system is anatomically safe and feasible, so the anterior atlantoaxial locking titanium plate screw internal fixation system is safe for clinical application.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R687.4
【相似文献】
相关期刊论文 前10条
1 王亮;胫骨骨折钢板螺钉内固定变形断裂20例临床分析[J];四川医学;2001年10期
2 傅惊涛,傅汝平,王兰平;螺钉固定与高压氧治疗老年股骨粗隆间骨折[J];中国骨伤;2001年02期
3 陈必胜;陶长仲;姜晓钟;李传义;王勇;王文崔;孙弘;朱明龙;;钛小夹板螺钉内固定在颌面外科中的应用[J];口腔医学;1989年04期
4 余铮,林崇汉,向香成;多点螺钉固定治疗成人重度肱骨髁间粉碎性骨折[J];实用骨科杂志;1998年04期
5 李龙,纪柳,江健,刘华彦,胡朝辉;带蒂桡骨膜移位螺钉内固定治疗陈旧性腕舟骨骨折[J];中国修复重建外科杂志;2004年05期
6 徐荣明;夏华杰;刘观q,
本文编号:1997035
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/1997035.html