电动汽车液压储能制动能量再生系统研究
本文选题:电动汽车 + 液压储能 ; 参考:《南京航空航天大学》2013年博士论文
【摘要】:发展电动汽车是缓解能源危机、降低环境污染、实现低碳环保经济持续发展的重要途径之一。锂离子蓄电池由于具有较高的比能量、较大的比功率、较长的循环使用寿命等优势,越来越成为电动汽车首选动力源。但是在市区行驶的电动汽车,由于受到交通拥挤和数量众多交通信号灯限制,被迫频繁起步加速和制动减速。起步加速时蓄电池组的大电流放电是导致锂离子蓄电池组损坏的主要原因之一。为了提高能量利用效率,研究电动汽车液压储能制动能量再生系统,具有重要的理论和工程应用价值。论文对电动汽车液压储能制动能量再生系统进行了研究和探讨,研制开发了具有自主知识产权的电动汽车液压储能制动能量再生系统。该系统在车辆制动时利用液压储能制动能量再生系统回收制动能,避免制动能量的浪费;在车辆起步加速阶段利用所储存的液压能驱动车辆达到一定车速后再启动电动机,避免电动机低速运行时大电流耗电对锂离子蓄电池组循环使用寿命的影响,并增加电动汽车单次充电续航里程。建立了电动汽车液压储能制动能量再生系统参数模型,并验证了液压储能制动能量再生系统模型的正确性。以并联型的液压储能制动能量再生系统作为研究对象,对液压储能制动能量再生系统制动能量回收和起步加速时能量释放过程的泵/马达、高压蓄能器、车辆的受力等进行了建模,得到了高压蓄能器的容积、泵/马达排量、液压管路管径、低压油箱容积等参数。通过液压储能制动能量再生系统试验验证了所选择出容积的蓄能器以及所选排量的斜柱式泵/马达等能够满足车辆制动过程储存能量的要求,并能够把车辆从静止加速到一定的速度,验证了所建立的液压储能制动能量再生系统参数模型的正确性。依据十五循环工况(ECE)进行了耗电量经济性仿真验证,在空载状态和满负荷状态下使用液压储能制动能量再生系统的电动汽车驱动电流峰值时间缩短,驱动电流的平均值降低,单次充电行驶里程有效地提高。提出了液压储能制动能量再生系统的车辆制动过程不同工况下制动控制策略,并进行了仿真验证。在确保制动性能的前提下,为了最大限度地回收制动能量,把液压储能制动能量再生系统的车辆制动过程划分成四种不同工况,即缓慢减速制动、中等强度减速制动、紧急制动和滑行制动。针对不同制动工况进行了相关的制动力分配与控制策略研究,通过仿真研究,验证了所提出的控制策略正确性。设计完成了一种检验铅酸蓄电池性能和锂离子蓄电池性能的电路,进行了铅酸蓄电池和锂离子蓄电池相关工作特性试验研究。得到了锂离子蓄电池组在允许放电范围内的内阻值几乎不随放电电流及放电量的变化而变化,所允许的最低放电电压不受负载的影响,单位时间内所能释放出来的电量几乎不随负载的变化而改变等规律。对蓄电池单体进行了电压精确测量,利用设计出的电路对蓄电池单体中电量较少的单体进行补充充电。研制了液压储能制动能量再生系统半物理仿真试验台控制系统,进行了基于液压储能制动能量再生系统半物理仿真试验研究。选择抗干扰能力强的MC9S12XS128微处理器作为控制系统MCU,利用PM150CLA060作为大功率直流无刷电动机的驱动模块,设计出直流无刷电动机控制器。利用电动机的霍尔传感器进行车速测量,对电磁离合器、液压电磁阀进行驱动电路设计,对压力传感器进行数据采集。得到了不同制动初速度时车辆的制动能量回收率、制动能量释放率、制动能量再生率。依据ECE循环工况,通过实测得到满载时使用液压储能制动能量再生系统前后车辆行驶百公里平均耗电量、蓄电池工作电流峰值、平均放电电流值等数据。分析得知液压储能制动能量再生系统能够有效地降低电动汽车所用蓄电池组工作电流峰值,减小平均工作电流值,延长车辆单次充电行驶里程,验证了液压储能制动能量再生系统的有效性。
[Abstract]:The development of electric vehicles is one of the important ways to alleviate the energy crisis, reduce the environmental pollution and realize the sustainable development of low carbon and environmental protection economy. The lithium ion battery has become the first choice of power sources for electric vehicles because of its advantages of high specific energy, larger specific power, longer cycle life and so on. Because of the traffic congestion and the limited number of traffic signals, the car is forced to start and speed up and reduce the braking speed frequently. The large current discharge of the battery group is one of the main causes of damage to the lithium ion battery group when the starting acceleration is accelerated. It has important theoretical and engineering application value. This paper studies and discusses the braking energy regeneration system of electric vehicle hydraulic energy storage brake, and develops a hydraulic energy storage brake energy regeneration system for electric vehicles with independent intellectual property rights. The system uses hydraulic energy storage braking energy regeneration system to recover braking energy during vehicle braking. Avoid the waste of braking energy; use the stored hydraulic power to drive the vehicle to a certain speed and restart the motor in the initial acceleration stage of the vehicle, to avoid the influence of the large current consumption on the cycle life of the lithium ion battery group when the motor is running at low speed, and to increase the mileage of the electric vehicle in a single charge, and establish an electric vehicle. The parameter model of the hydraulic regenerative braking energy regeneration system is used to verify the correctness of the model of the hydraulic energy storage braking energy regeneration system. A parallel hydraulic energy storage braking energy regeneration system is used as the research object. The pump / motor of the braking energy recovery of the hydraulic energy storage braking energy regeneration system and the energy release process when the step is accelerated is high pressure. The accumulator and the force of the vehicle are modeled, and the volume of the high pressure accumulator, the displacement of the pump / motor, the hydraulic pipe diameter and the volume of the low pressure tank are obtained. Through the test of the hydraulic energy storage braking energy regeneration system, the selected volume accumulator and the inclined column pump / motor of the selected discharge capacity can meet the braking of the vehicle. The requirement of storage energy is stored and the vehicle can be accelerated from rest to a certain speed. The correctness of the parameters model of the hydraulic regenerative braking energy regenerative system is verified. Based on the fifteen cycle condition (ECE), the economic simulation verification of the power consumption is carried out, and the hydraulic energy storage braking energy is used in the empty and full load state. The peak time of the driving current of the electric vehicle is shortened, the average driving current is reduced, and the mileage of the single charge is improved effectively. The braking control strategy of the braking process of the hydraulic energy storage braking energy regeneration system under different operating conditions is put forward, and the simulation test is carried out. The maximum of the braking performance is to ensure the maximum braking performance. The braking energy is recovered to the limit, and the braking process of the hydraulic regenerative braking energy regeneration system is divided into four different working conditions, namely, slow deceleration braking, moderate deceleration braking, emergency braking and sliding braking. The related braking force distribution and control strategy are studied for different braking conditions, and the simulation is verified through simulation research. The proposed control strategy is correct. A circuit is designed to test the performance of lead-acid battery and the performance of lithium ion battery. The experimental study on the working characteristics of the lead-acid battery and lithium ion battery is carried out. The internal resistance of the lithium ion battery group in the allowable discharge range is almost not followed by the discharge current and discharge. The allowable minimum discharge voltage is not affected by the load. The energy released in unit time does not change with the change of the load. The voltage of the battery monomer is measured accurately, and the designed circuit is used to replenish the monomer in the battery monomer. The semi physical simulation test system based on hydraulic energy storage brake energy regeneration system is carried out in a semi physical simulation test system based on hydraulic energy storage braking system. The MC9S12XS128 microprocessor with strong anti-interference ability is selected as the control system MCU, and PM150CLA060 is used as the driving module of the high-power DC brushless motor. The DC brushless motor controller is used to measure the speed of the car with the Holzer sensor of the motor. The driving circuit of the electromagnetic clutch and the hydraulic solenoid valve is designed. The data acquisition of the pressure sensor is carried out. The braking energy recovery rate, the release rate of braking energy and the regenerative rate of braking energy are obtained when the initial speed of the brake is different. According to the ECE, the regenerative rate of braking energy is obtained. In the cycle condition, the average power consumption of a hundred kilometers, the peak value of the battery working current and the average discharge current value are obtained by using the hydraulic energy storage braking energy regeneration system with full load, and the analysis shows that the regenerative system of the hydraulic energy storage brake energy can effectively reduce the peak current peak of the battery group used in the electric vehicle. The system can reduce the average working current value and extend the mileage of single charging vehicle, which verifies the effectiveness of the hydraulic energy storage braking energy regeneration system.
【学位授予单位】:南京航空航天大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:U463.5;U469.72
【参考文献】
相关期刊论文 前10条
1 丁左武;王书林;赵伟军;赵建华;屈敏;;铅酸蓄电池相关特性的试验研究[J];蓄电池;2010年06期
2 施风荣;;蓄电池高精度在线监测系统的设计与研制[J];重庆科技学院学报(自然科学版);2007年02期
3 雷娟;蒋新华;解晶莹;;锂离子电池组均衡电路的发展现状[J];电池;2007年01期
4 苗冬梅;程新群;孙长亮;王常波;;过充对电动自行车用锂离子电池安全性能的影响[J];电池;2009年02期
5 张寅孩;林俊;黎继刚;;基于储能电感对称分布的动态均衡充电的研究[J];电工技术学报;2010年10期
6 刘志坚;汪艳;蒋宁懿;;高倍率锂离子蓄电池设计的研究[J];电源技术;2008年08期
7 王琴;赵晖;尚晋;冯婵;;共壳体锂离子蓄电池组性能研究[J];电源技术;2010年10期
8 刘春娜;;电动汽车电池应用与展望[J];电源技术;2011年01期
9 丁左武;赵东标;;锂离子蓄电池相关特性试验研究[J];电源技术;2011年07期
10 张超;徐国顺;肖翼洋;;大容量铅酸蓄电池组内阻测量装置设计与分析[J];电源技术;2011年09期
相关博士学位论文 前7条
1 张冰战;插电式混合动力电动汽车能量管理策略研究[D];合肥工业大学;2011年
2 武国良;电动汽车用镍氢电池剩余电量估计方法研究[D];哈尔滨工业大学;2010年
3 于海芳;混合动力汽车复合储能系统参数匹配与控制策略研究[D];哈尔滨工业大学;2010年
4 张缓缓;采用电动轮驱动的电动汽车转矩协调控制研究[D];吉林大学;2009年
5 张晓峰;小型混合动力车中电力驱动装置的若干关键技术研究[D];浙江大学;2009年
6 郑维;混合动力汽车动力总成参数匹配方法与控制策略的研究[D];哈尔滨工业大学;2010年
7 赵国柱;电动汽车再生制动若干关键问题研究[D];南京航空航天大学;2012年
,本文编号:2010812
本文链接:https://www.wllwen.com/falvlunwen/zhishichanquanfa/2010812.html