同城服装门店VMI模式下分布式库存策略研究
发布时间:2018-07-07 23:27
本文选题:VMI模式 + 分布式库存 ; 参考:《北京交通大学》2017年硕士论文
【摘要】:近些年来,市场竞争随着全球经济共同体的逐渐成熟而更激烈。对于变化多样、难以预测的买方市场,企业之间往往存在激烈的竞争。同时,买方对产品的需求呈现出差异性、非静态性和不确定性,产品的生命周期也在缩短。对于服装行业,这一形势显得尤为明显。当今服装行业的特点是:产品生命周期短,品种多,数量小,顾客对服装产品的到货日期、价格、质量和个性化要求也越来越高。企业为了快速响应顾客需求,往往会有大量库存。同时服装企业拥有很多分销网点,并且分布在不同位置,因此如何使库存合理配置,降低库存成本是现代服装企业迫切需要解决的问题。本文研究的是供应商管理库存(Vendor Managed Inventory,缩写为VMI)下的分布式库存策略,探讨在该模式下同城服装门店的库存补货策略和调拨策略,使单位时间内系统的总成本最小。主要进行如下研究:(1)明确研究场景。分布式库存管理实施的关键在于决策持有库存量和当需求来临时库存缺乏该如何处理。为了解决库存控制问题,本文研究的是由供应商和分销商组成的二级供应链系统在VMI模式下的分布式库存策略,即供应商对多个分销商库存进行管理。采用集中控制和分散管理的模式,通过虚拟协调中心,对分散在各库存点的库存信息进行集中控制。(2)进行VMI模式下的分布式库存需求预测方法的研究,服装行业的库存需求具有明显的周期性变化特点,按年周期上升,并且考虑到这个变化特点所具有的不确定性,根据其历史库存需求数据,采用随机时间序列预测和灰色预测组合的预测算法进行建模,将预测得到的数据与实际数据进行对比改进,从而使拟合模型的精确度得到提高。进行库存需求预测,库存策略的制定。(3)研究基于二级供应链系统在VMI模式下的分布式库存策略,对补货和调拨策略进行探讨。以现实中的具体情况为依据,分别根据补货和调拨策略建立模型,采用自适应遗传算法对模型求解,求解出能使库存成本最低的安全库存、补货量以及送货点。(4)结合北京某企业的具体业务,对历史需求数据进行分析和拟合,然后预测未来一段时间的产品需求量,进行补货和调拨分析,对比这两种方式所产生的费用,来验证采用VMI模式下的分布式库存策略的优势。
[Abstract]:In recent years, the market competition with the global economic community gradually mature and more intense. For the diverse and unpredictable buyer market, there is often fierce competition between enterprises. At the same time, the buyer's demand for the product is different, non-static and uncertain, the product life cycle is also shortened. For the clothing industry, this situation is particularly obvious. Nowadays, the characteristics of garment industry are: short product life cycle, variety and small quantity. Customers have higher and higher demands on the date of arrival, price, quality and individuation of garment products. In order to quickly respond to customer demand, enterprises often have a large amount of inventory. At the same time, clothing enterprises have a lot of distribution outlets and are distributed in different places. Therefore, how to reasonably allocate inventory and reduce inventory cost is an urgent problem to be solved by modern garment enterprises. In this paper, the distributed inventory strategy under Vendor managed inventory (VMI) is studied. In this model, the inventory replenishment strategy and allocation strategy of clothing stores in the same city are discussed, so that the total cost of the system per unit time is minimized. The main research is as follows: (1) clear research scene. The key to implement distributed inventory management is to decide how to hold inventory and how to deal with the lack of inventory when demand comes. In order to solve the inventory control problem, this paper studies the distributed inventory strategy of a two-level supply chain system composed of suppliers and distributors under the VMI model, that is, the supplier manages the inventory of multiple distributors. By using centralized control and decentralized management mode and virtual coordination center, the inventory information scattered in each inventory point is centrally controlled. (2) the distributed inventory demand forecasting method based on VMI mode is studied. The inventory demand of the clothing industry is characterized by obvious cyclical changes, rising annually, and considering the uncertainty of this change, according to the historical inventory demand data, The prediction algorithm combined with stochastic time series prediction and grey prediction is used to model the model. The prediction data is compared with the actual data to improve the accuracy of the fitting model. Forecasting inventory demand and making inventory strategy. (3) based on the distributed inventory strategy of two-level supply chain system in VMI mode, the strategy of replenishment and allocation is discussed. According to the concrete situation in reality, the model is established according to replenishment and allocation strategy, and the model is solved by adaptive genetic algorithm, and the safe inventory with the lowest inventory cost can be solved. Combined with the specific business of a certain enterprise in Beijing, the historical demand data are analyzed and fitted, and then the product demand for a period of time in the future is predicted, and the replenishment and allocation analysis is carried out. Compare the cost of these two methods to verify the advantage of distributed inventory strategy in VMI mode.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F274;F426.86
【参考文献】
相关期刊论文 前10条
1 但斌;贺庆仁;李宇雨;;易逝品多销售阶段预防性横向调拨与订货决策模型[J];管理工程学报;2017年01期
2 孟志青;马珂;郑英;;基于核函数技术的时尚服装需求预测方法[J];计算机科学;2016年S2期
3 胡玉凤;张f义;杨功平;;需求不确定性下的安全库存模型的构建——基于某企业的真实数据为例[J];物流工程与管理;2013年01期
4 胡觉亮;孔云鹏;韩曙光;杨旭东;;需求信息更新下服装供应链的最优订货决策研究[J];纺织学报;2012年11期
5 林宛杨;;浅析汽车供应链管理中备件库存成本管理[J];电脑与电信;2010年11期
6 乔亮亮;;多元线性回归预测法在服装制造中的应用[J];长江大学学报(自然科学版)理工卷;2010年01期
7 王槐林,杨敏才,张晓凤,张向阳;供应链管理中VMI系统的研究[J];工业工程;2005年01期
8 李永祥,韩昭敏;供应链中的牛鞭效应及VMI[J];重庆工商大学学报(自然科学版);2004年06期
9 张丽霞,唐万生,邹明能;基于Multi-agent的库存管理优化[J];微处理机;2004年04期
10 朱宏,郭海峰,黄小原;供应商管理库存的利润模型及其优化策略[J];东北大学学报;2004年05期
相关硕士学位论文 前1条
1 曹旭;基于VMI的分布式库存优化模型研究与系统实现[D];哈尔滨工业大学;2006年
,本文编号:2106626
本文链接:https://www.wllwen.com/gongshangguanlilunwen/2106626.html