云南省某州(市)能源预测模型的研究
[Abstract]:Energy is the basis of the development of human society. The total amount of energy reserves in China is relatively large, but the energy per capita is insufficient, the energy prospect is still not optimistic. The over-exploitation of energy causes the decrease of energy reserves and serious damage to the ecological environment. After the reform and opening up, China attaches great importance to the energy industry issues and actively take appropriate measures. Although it has made certain achievements in the energy field, it has also brought many problems, such as relatively low energy use efficiency. The contradiction between energy supply and demand and environmental pollution are becoming more and more serious, which hinder the sustainable development of society and economy to a certain extent. Therefore, it is necessary to speed up the transformation of energy development mode, adjust the energy consumption structure and energy production structure, and build a national economic system and a resource-saving society with low consumption of resources, less environmental pollution, and good economic benefits. Scientific prediction and evaluation of energy production and consumption, supervision and planning of energy use. It is of great significance to promote the increase of GDP in Honghe Prefecture and to build a harmonious society and a saving society. This paper analyzes the current situation of energy consumption in Honghe Prefecture from the aspects of total energy consumption, industrial structure and key energy-consuming industries, and establishes a factorization method to analyze the economic factors. The main change characteristics of energy consumption in Honghe Prefecture are analyzed in detail from three aspects: technical factors and structural factors. On this basis, the total energy consumption of Honghe Prefecture is predicted by factor analysis, multivariate linear regression model and exponential smoothing method. The error is analyzed and combined with the advantages of each model. The energy demand is modeled and forecasted by using the divorce coefficient variable weight combination model. Furthermore, the energy consumption in Honghe Prefecture is predicted with higher prediction accuracy and better reliability. According to the overall consumption situation of energy industry in Honghe Prefecture, the main changing characteristics in the process of energy consumption and the forecast results obtained by establishing a prediction model for total energy consumption, the problems existing in the development of energy industry are pointed out. The detailed countermeasures and suggestions for the future development of energy industry in Honghe Prefecture are put forward. In the future, Honghe Prefecture must optimize its industrial structure, change its mode of economic growth, rely on scientific and technological progress and innovation to improve its energy utilization rate, strengthen the government's macro-control, and improve its market-oriented energy system. In order to achieve the effective use of energy and sustainable development.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F426.2
【参考文献】
相关期刊论文 前10条
1 马丁;单葆国;;2030年世界能源展望——基于全球能源展望报告的对比研究[J];中国能源;2017年02期
2 林卫斌;;2017年能源经济形势展望——能源消费增速放缓,生产回暖,进口增速下降[J];中国石油和化工;2017年02期
3 井然;;对中国能源绿色转型的基础性认识——专访中国电力企业联合会行业发展与环境资源部副主任薛静[J];中国电力企业管理;2017年04期
4 Zhen Hong;Rui Wang;Xile Li;;A Clustering-tree Topology Control Based on the Energy Forecast for Heterogeneous Wireless Sensor Networks[J];IEEE/CAA Journal of Automatica Sinica;2016年01期
5 沈镭;刘立涛;王礼茂;陈枫楠;张超;沈明;钟帅;;2050年中国能源消费的情景预测[J];自然资源学报;2015年03期
6 赵春富;刘耕源;陈彬;;能源预测预警理论与方法研究进展[J];生态学报;2015年07期
7 莫颖春;段波;王文荣;;中国产业结构变迁对经济增长和波动的影响[J];现代商业;2014年12期
8 吉平;周孝信;宋云亭;马世英;李柏青;;区域可再生能源规划模型述评与展望[J];电网技术;2013年08期
9 余小兰;姚永忠;;BP神经网络技术在临床诊断中的应用[J];现代医学;2012年02期
10 陶然;蔡云泽;楼振飞;刘卫星;;国内外能源预测模型和能源安全评价体系研究综述[J];上海节能;2012年01期
相关博士学位论文 前1条
1 刘卫星;可持续发展的上海能源战略研究[D];上海大学;2008年
相关硕士学位论文 前10条
1 张雨;云南省上市公司成长性分析[D];云南财经大学;2016年
2 田振伟;城市能源预测模型的研究与应用[D];昆明理工大学;2015年
3 郭晓娜;基于组合模型的辽宁能源需求预测及政策研究[D];东北财经大学;2012年
4 陶然;上海能源预测模型及能源利用效率评价指标体系研究[D];上海交通大学;2012年
5 刘士彬;我国能源消费需求分析与预测研究[D];中国海洋大学;2011年
6 王晶晶;北京市农村能源消费状况的统计分析[D];河北大学;2010年
7 芦森;基于组合模型的中国能源需求预测[D];成都理工大学;2010年
8 李雪慧;河南省在工业化和城市化进程中的能源需求预测[D];厦门大学;2009年
9 陈亚妮;北京市能源消费的结构与动态分析研究[D];北京化工大学;2008年
10 魏广明;区域能源需求预测及能源发展策略选择[D];天津大学;2007年
,本文编号:2180108
本文链接:https://www.wllwen.com/gongshangguanlilunwen/2180108.html