银行信贷与房地产价格波动
本文选题:房地产价格 + 银行信贷 ; 参考:《长沙理工大学》2016年硕士论文
【摘要】:目前,我国经济形势面临着下行的压力,由过去的资本与商品存在双短缺过渡到商品与资本的双过剩。如何化解过剩产能已经成为我国房地产业的热门议题,“去库存”也被列上了日事议程。2015年,我国政府放松对房地产的信贷政策,首套房公积金贷款最低首付降到20%,首套房已结清房贷的,再次购买申请公积金贷款降低至30%等,以此来缓解经济发展下行的压力并促进中国房地产市场健康、持续、稳定、有序的发展。在此背景下,本文研究我国银行信贷对房地产价格波动的影响,从我国一二线城市的视角进行分析就很具备学术价值和现实社会价值。文章将银行信贷与房地产价格为研究对象,分别探讨一线城市与二线城市的银行信贷与房地产价格波动的影响及其影响程度。首先,从理论知识和建模中分析银行信贷与房地产价格的传导效应。然后,在实证分析部分,选取我国商品房平均销售价格作为被解释变量来衡量房地产价格,选取金融机构人民币各项贷款作为解释变量来表示银行信贷。在进行分析处理过程中,还曾选取国内生产总值GDP、物价消费指数CPI以及贷款利率LI作为解释变量,最终得出以上三个解释变量对被解释变量的实证结果不显著,故将其剔除出模型中。本文是在剔除通货膨胀因素的情况下,使用我国35个一二线城市1999-2013年的银行信贷与房地产价格的年度数据,建立不变系数模型,并利用Granger因果检验方法对二者之间关系进行实证检验。得出结论,银行信贷与房地产价格存在单向因果关系。一线城市的房地产价格对银行信贷存在单向引导;二线城市的银行信贷对房地产价格的单向引导。后者的房地产价格波动受到银行信贷影响程度比前者所受影响更大。基于此,为了更好地控制中国房地产市场的价格,政府相关部门可以对我国不同城市采取差别化信贷政策。对一线城市采取信贷政策与其他宏观经济政策配套使用,根据经济增长水平合理确定本地区的新建住房数量目标,严格住房用地供应管理以及有效引导消费者的住房需求。对二线城市重点实施合理有效的信贷政策,辅之相应的金融政策共同控制房地产价格在合理区间内变动。
[Abstract]:At present, the economic situation of our country is facing downward pressure, from double shortage of capital and commodity in the past to double surplus of commodity and capital. How to resolve excess production capacity has become a hot topic in China's real estate industry, and "going to inventory" has also been put on the agenda of Japan. In 2015, our government relaxed its credit policy on real estate. The minimum down payment for the first housing provident fund loan has dropped to 20. If the first house has settled its housing loan, the purchase and application for a provident fund loan will be reduced to 30%, so as to ease the downward pressure on economic development and promote the health, sustainability and stability of China's real estate market. An orderly development. Under this background, this paper studies the influence of bank credit on the real estate price fluctuation in China. It has academic value and realistic social value from the perspective of the first and second tier cities in China. Taking bank credit and real estate price as the research object, this paper discusses the influence of bank credit and real estate price fluctuation in first-tier city and second-tier city respectively and their influence degree. Firstly, the paper analyzes the conduction effect of bank credit and real estate price from theoretical knowledge and modeling. Then, in the empirical analysis part, the average selling price of commercial housing in China is chosen as the explained variable to measure the real estate price, and the RMB loans of financial institutions are selected as the explanatory variables to represent bank credit. In the process of analysis and processing, we also selected GDP, CPI and Li as explanatory variables. Finally, the empirical results of the above three explanatory variables on the explained variables are not significant. Therefore, it is removed from the model. Based on the annual data of bank credit and real estate prices from 1999 to 2013 in 35 first and second tier cities in China, this paper establishes a constant coefficient model. And Granger causality test method is used to test the relationship between the two. The conclusion is that bank credit and real estate prices have a one-way causal relationship. Real estate prices in first-tier cities have one-way guidance to bank credit, while bank credit in second-tier cities has one-way guidance on real estate prices. The latter's real estate price volatility is more affected by bank credit than the former. Based on this, in order to better control the prices of China's real estate market, the relevant government departments can adopt differential credit policy for different cities in China. Credit policy and other macroeconomic policies should be adopted in first-tier cities. According to the level of economic growth, the target of new housing quantity in this area should be reasonably determined, the supply of housing land should be strictly managed and the housing demand of consumers should be effectively guided. Second-tier cities focus on the implementation of reasonable and effective credit policy, supplemented by the corresponding financial policies to control the real estate prices in a reasonable range of changes.
【学位授予单位】:长沙理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:F299.23;F832.4
【参考文献】
相关期刊论文 前10条
1 沈悦;戴士伟;陈锟;;房价过度波动的系统性风险溢出效应测度——基于GARCH-Copula-CoVaR模型[J];中央财经大学学报;2016年03期
2 袁东;何秋谷;赵波;;房价变动的影响因素研究:一个文献综述[J];经济与管理研究;2016年03期
3 黄燕芬;张磊;;2016年中国房地产业主基调:去库存、稳市场[J];价格理论与实践;2015年12期
4 何青;钱宗鑫;郭俊杰;;房地产驱动了中国经济周期吗?[J];经济研究;2015年12期
5 辛兵海;张晓云;陶江;;异质性条件、资产价格和银行信贷[J];国际金融研究;2015年09期
6 郑忠华;张瑜;;房地产市场、银行体系与中国宏观经济波动——基于多部门动态随机一般均衡模型的分析[J];南方经济;2015年02期
7 王拉娣;安勇;王佳;;房价波动与银行信贷风险的动态相关关系研究[J];经济问题;2014年12期
8 黄梓蔚;潘海英;;银行信贷规模与房地产价格波动关系研究[J];价格理论与实践;2014年11期
9 沈悦;徐妍;郑冠群;;基于银行风险承担视角的房地产信贷政策调控效果研究[J];金融经济学研究;2014年04期
10 沈悦;郭培利;;经济增长、银行信贷与住宅价格波动——基于35个大中城市异质面板的实证分析[J];软科学;2014年07期
相关博士学位论文 前3条
1 孟彩云;中国房地产价格对产出和消费物价的影响[D];暨南大学;2012年
2 萨秋荣;房地产价格波动与银行信贷关系研究[D];南开大学;2011年
3 周京奎;金融支持过度与房地产泡沫研究[D];南开大学;2004年
,本文编号:2047587
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2047587.html