当前位置:主页 > 管理论文 > 信贷论文 >

基于EEMD-SVR的预测模型与应用

发布时间:2018-08-18 13:02
【摘要】:针对金融时间序列的复杂性,本文将经验模态分解(EMD)引入金融时间序列预测框架中进行研究。EMD多应用于通信、气象领域的数据处理,而应用于金融领域则不多,但是它具有明显的优点:能根据数据本身的时间尺度特征准确反映原时间序列的物理特性而不造成信号损失,而且无需预先设定任何基函数,这与小波分析、傅里叶变换等方法有本质的区别。但EMD存在模态混叠问题,因此需要对EMD方法进行改进和优化以提高预测的有效性。 本文首先构建了总体经验模态分解(EEMD)模型,基于获取的原始数据,模拟产生多条路径的修正数据,每一次修正的数据中加入不同的白噪声以抵消原始数据中的噪声,对每个修正的序列进行EMD分解,而后取多次分解的平均值作为最后的分解序列,从而升了序列的信噪比,解决模态混叠问题。之后,将支持向量回归(SVR)模型引入到金融时间序列分析,同时,采用多种群遗传算法(MPGA)进行SVR的参数寻优。MPGA引入多个种群同时进行遗传进化搜索,对不同的种群设置相应的控制参数,并在不同种群之间依靠移民算子完成信息交互,最终在多个种群协同进化下得到最优解,,可以有效地防止早熟,大大提高收敛速度。 最后,基于前文构建的EMD与SVR的改进模型,在趋势交易中进行应用。构建EEMD-MPGA-SVR预测模型。应用的结果表明:其一,对比不同参数寻优的SVR模型发现,不论是否进行EEMD分解,与网格搜索法SVR、标准遗传算法SVR相比,多种群遗传算法SVR的参数估计及其预测效果都是最好的。其二,对比进行EEMD分解前后的预测效果发现,基于EEMD分解的SVR预测效果明显优于直接采用原始序列的SVR预测(偏差较小),而且能较快地捕捉市场信息,由此所触发交易的累计收益率也更高,平均累计收益率也更高,从而收益的稳定性更强。
[Abstract]:In view of the complexity of financial time series, empirical mode decomposition (EMD) is introduced into the framework of financial time series prediction. EMD is mostly used in communication, meteorological data processing, but not in financial field. But it has obvious advantages: it can accurately reflect the physical characteristics of the original time series according to the time scale characteristics of the data without causing signal loss, and it does not need to set any basis function in advance, which is similar to wavelet analysis. Fourier transform and other methods have essential differences. However, EMD has the problem of modal aliasing, so it is necessary to improve and optimize the EMD method to improve the effectiveness of prediction. In this paper, a global empirical mode decomposition (EEMD) model is constructed. Based on the original data obtained, the modified data of multiple paths are simulated, and different white noises are added to each modified data to offset the noise in the original data. Each modified sequence is decomposed by EMD, and then the average value of multiple decomposition is taken as the final decomposition sequence, which increases the SNR of the sequence and solves the problem of mode aliasing. Then, the support vector regression (SVR) model is introduced into the financial time series analysis. At the same time, the multi-population genetic algorithm (MPGA) is used to optimize the parameters of SVR. By setting corresponding control parameters for different populations and interacting information among different populations by means of immigration operators, the optimal solution can be obtained under the coevolution of multiple populations, which can effectively prevent premature maturing and greatly improve the convergence rate. Finally, based on the improved model of EMD and SVR, it is applied in trend trading. EEMD-MPGA-SVR prediction model is constructed. The application results show that: firstly, compared with the SVR model with different parameters, it is found that, whether or not EEMD is decomposed, it is compared with the grid search method and the standard genetic algorithm (SVR). Multi-population genetic algorithm (SVR) is the best in parameter estimation and prediction. Secondly, comparing the prediction results before and after EEMD decomposition, it is found that the prediction effect of SVR based on EEMD decomposition is obviously better than that of SVR prediction using the original sequence directly (the deviation is small), and it can capture market information quickly. The cumulative yield and the average cumulative yield are higher, so the return is more stable.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F830.91;F224;TP18

【参考文献】

相关期刊论文 前10条

1 吴萌;徐全智;;支持向量机在金融时间序列预测中的应用[J];电子科技大学学报;2007年S1期

2 叶在福,单渊达;基于多种群遗传算法的输电系统扩展规划[J];电力系统自动化;2000年05期

3 李天云,赵妍,李楠;基于EMD的Hilbert变换应用于暂态信号分析[J];电力系统自动化;2005年04期

4 汤凌冰;盛焕烨;汤凌霄;;新型小波支持向量机在波动率预测中的实证研究[J];系统工程;2009年01期

5 奉国和,朱思铭;改进SVM及其在时间序列数据预测中的应用[J];华南理工大学学报(自然科学版);2005年05期

6 丁志宏;谢国权;;金融时间序列多分辨率实证研究的EMD方法[J];经济研究导刊;2009年06期

7 陈为民;马超群;;支持向量机方法及其在金融中的应用与前景[J];金融经济;2006年12期

8 李立辉,田翔,杨海东,胡月明;基于SVR的金融时间序列预测[J];计算机工程与应用;2005年30期

9 曲文龙;李海燕;刘永伟;杨炳儒;;基于小波和支持向量机的多尺度时间序列预测[J];计算机工程与应用;2007年29期

10 陈果;邓堰;;遗传算法特征选取中的几种适应度函数构造新方法及其应用[J];机械科学与技术;2011年01期

相关硕士学位论文 前1条

1 瞿娜娜;基于组合核函数支持向量机研究及应用[D];华南理工大学;2011年



本文编号:2189547

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2189547.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1822b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com