超声悬浮非金属材料的无容器熔融装置设计及实验研究
本文关键词: 无容器熔融 超声驻波悬浮 电磁感应加热 声压仿真 非金属材料 出处:《吉林大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着凝聚态物理、生化分析等技术的发展,人们对实验环境要求不断提高,无容器处理技术便应运而生。因悬浮技术成本低,效果稳定,研究者逐渐将精力转入悬浮上来,其中声悬浮由于其悬浮力较大,悬浮稳定,并且对悬浮物没有特殊性质要求等优点,其应用范围和领域在不断的扩大。本文首先从无容器处理技术入手,分析现有的无容器处理技术的方法和种类,通过对比分析,最终选用超声驻波悬浮作为本实验的技术手段。通过对比现有的加热技术手段,选取了电磁感应技术作为本实验研究的加热方式;通过介绍电磁感应加热技术的发展历程和优势。最终提出现阶段非金属材料悬浮熔融和阶梯凝固存在的问题。第二章从超声驻波悬浮原理入手,分析声频率、温度、重力水平和腔体形状对驻波声辐射力和悬浮稳定性的影响。综合各种因素,选用具有较大功率的压电陶瓷式超声换能器,其固有频率为19330Hz,经两级变幅杆放大之后最大位移满足使用要求。本文的实验加热装置采用高频电磁螺线圈感应加热谐振管。电磁螺线圈由于高频交流电的通入,产生交变磁场,其产生的磁束贯穿金属体,在金属体内部形成涡电流,由焦耳热效应产生高温。对电磁感应线圈进行优化设计,考虑包括线圈形状、匝数、匝间距等因素对感应加热的影响,利用maxwell软件,对比各种不同影响因子的影响情况,最终确定最佳参数制作样机。基于选用的换能器和谐振管以及电磁螺线圈,建立了声悬浮装置的ANSYS有限元模型,分析了存在观察孔的谐振管对超声驻波悬浮的影响,通过仿真确定观察孔的尺寸;建立了瞬态热分析的有限元模型,对比谐振管在不同温度下对悬浮物的影响情况,通过理论分析,选择合适的谐振管温度来进行实验。根据以上仿真分析和理论得到的结果,搭建了无容器熔融实验平台,完成了石蜡和pom材料小球在超声驻波悬浮下的无容器熔融实验,主要实现不同石蜡小球的无容器熔融和阶梯凝固,并且实现不同悬浮物在不同温度状态和不同重力水平下的悬浮实验。本文的最后是对全文理论、设计和实验的全面回顾和评价,针对本文设计制作的无容器熔融实验装置存在的问题,提出了建议和设想,为以后进一步的研究工作指出了改进方向。
[Abstract]:With the development of condensed matter physics, biochemical analysis and other technologies, the requirement of experimental environment is increasing, and the technology of containerless treatment comes into being. Because of the low cost and stable effect of suspending technology, researchers gradually turn their attention to levitation. Among them, acoustic suspension has the advantages of large suspending force, stable suspension, and no special property requirement, so its application scope and field are constantly expanding. Firstly, this paper starts with the technology of containerless treatment. This paper analyzes the methods and types of the existing containerless treatment technology, and finally selects the ultrasonic standing wave suspension as the technical means of this experiment by comparing the existing heating technology means, and finally selects the ultrasonic standing wave suspension as the technical means of this experiment. The electromagnetic induction technology is selected as the heating mode of this experiment. By introducing the development and advantages of electromagnetic induction heating technology, the problems existing in suspension melting and step solidification of non-metallic materials at the present stage are put forward. Chapter two begins with the principle of ultrasonic standing wave suspension, and analyzes the acoustic frequency and temperature. Effects of gravity level and cavity shape on standing wave acoustic radiation force and suspension stability. The natural frequency is 19330Hz, and the maximum displacement can meet the requirements after the amplification of the two-stage amplitude-varying rod. In this paper, the experimental heating device uses the high-frequency electromagnetic coil inductively to heat the resonant tube, which produces an alternating magnetic field due to the high frequency alternating current. The magnetic beam produced by the magnetic beam runs through the metal body and forms a vortex current in the metal body, which generates high temperature by the Joule heat effect. The optimum design of the electromagnetic induction coil includes the influence of the shape of the coil, the number of turns, the turn spacing and other factors on the induction heating. Maxwell software is used to compare the influence of different influence factors, and the optimal parameters are determined to make the prototype. Based on the selected transducer, resonant tube and electromagnetic coil, the ANSYS finite element model of the acoustic suspension device is established. The influence of resonant tube with observation hole on ultrasonic standing wave suspension is analyzed, the size of observation hole is determined by simulation, the finite element model of transient thermal analysis is established, and the influence of resonant tube on suspension at different temperature is compared. Through theoretical analysis, appropriate resonant tube temperature is selected for experiment. Based on the above simulation analysis and theoretical results, a containerless melting experiment platform is built. The experiments of non-vessel melting of paraffin and pom material spheres under ultrasonic standing wave suspension were completed. The experiments mainly realized the non-vessel melting and step solidification of different paraffin pellets. And the suspension experiments of different suspended solids at different temperature and gravity level are realized. The last part of this paper is a comprehensive review and evaluation of the theory, design and experiment. In view of the problems existing in the design and manufacture of the containerless melting experimental device in this paper, some suggestions and ideas are put forward, and the improvement direction for the further research work is pointed out.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB32;TB559
【相似文献】
相关期刊论文 前10条
1 宁方立;张文治;董梁;;圆柱形谐振管内非线性驻波的有限体积计算方法[J];机械工程学报;2012年16期
2 梁国柱,马彬,程显辰,张国舟,张振鹏;气动谐振管加热效应初步实验[J];推进技术;2002年01期
3 童晓艳,梁国柱,张国舟;圆柱形谐振管气动谐振加热现象的理论分析[J];推进技术;2004年05期
4 郭方中;赵玲;胡兴华;张春萍;;热声谐振管材质的优选设计[J];华中科技大学学报(自然科学版);2006年05期
5 张春萍;刘伟;张晓青;吴锋;赵玲;;外激励热声谐振管有限元模型研究[J];低温工程;2008年01期
6 王军;吴锋;杨志春;刘明方;;热声谐振管压比影响因素的数值模拟[J];武汉工程大学学报;2010年12期
7 宁方立;王康;;谐振管内非线性驻波的二维有限差分计算方法[J];机械工程学报;2011年18期
8 冯和英;张晓青;彭叶辉;陈焕新;;活塞驱动的指数形谐振管内的非线性振荡[J];工程热物理学报;2012年04期
9 梁国柱,张振鹏,张国舟,程显辰;气动谐振管加热机理数值研究[J];北京航空航天大学学报;1999年06期
10 安联,梁国柱,童晓艳;气动谐振管内压力振荡数值计算[J];北京航空航天大学学报;2003年02期
相关会议论文 前5条
1 李端勇;吴锋;李青;郭方中;;热声热机中谐振管的功能[A];制冷空调新技术进展——第三届制冷空调新技术研讨会论文集[C];2005年
2 范瑜f[;刘克;;渐变截面谐振管中的声流[A];中国声学学会第九届青年学术会议论文集[C];2011年
3 张利杰;田章福;曾新吾;;哈特曼谐振管共振频率决定因素分析[A];2008年全国声学学术会议论文集[C];2008年
4 赵云;曾新吾;田章福;;基于动态压力测量的低频气体谐振发声实验研究[A];中国声学学会第九届青年学术会议论文集[C];2011年
5 刘丹晓;范瑜f[;刘克;;指数型谐振管内非线性声场的数值模拟研究[A];泛在信息社会中的声学——中国声学学会2010年全国会员代表大会暨学术会议论文集[C];2010年
相关硕士学位论文 前5条
1 龚建石;指数型热声谐振管内非线性声流场的模拟研究[D];湖南科技大学;2016年
2 孙立权;超声悬浮非金属材料的无容器熔融装置设计及实验研究[D];吉林大学;2017年
3 张凯;谐振管对超声驻波悬浮的影响特性及其实验研究[D];吉林大学;2014年
4 刘凯凯;时均气流驱动深腔流体谐振机理研究[D];浙江大学;2012年
5 李鹏冲;气动谐振点火器的试验及数值模拟研究[D];国防科学技术大学;2008年
,本文编号:1503955
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1503955.html