对置式换能器阵声场性能仿真与实验
本文关键词: 超声驻波悬浮传输 对置式换能器阵 几何位置参数 声场性能 势阱位置 出处:《哈尔滨工业大学》2017年硕士论文 论文类型:学位论文
【摘要】:超声驻波悬浮传输技术作为一种非接触式传输技术,广泛应用于生物、化学、材料及机械等科学领域,但关于利用对置式换能器阵装置实现一定应用的研究较少,因此本课题所研究的对置式换能器阵声场性能仿真与实验,将对置式换能器阵分为同轴阵元与非同轴阵元,通过仿真与实验分析这两种模式下对应声场性能,从而实现一定的应用。具体研究内容如下:首先,进行对置式换能器阵形成声场的分布规律的理论分析,推出波动方程,在两阵元同轴的情况下,推导声场中声压、质点速度、时间平均势、声辐射力等参数的分布规律,分析相位差对声场强度的影响,得出驻波声场形成的条件;对非同轴阵元形成的声场进行二维空间理论分析;比较不同换能器阵形成声场的特点,当两阵元一端振动一端不振、两端同向振动、两端相向振动时,形成驻波声场的条件不同。其次,针对两同轴阵元形成声场进行驻波形成与轴向悬浮传输的研究。通过仿真与实验分析谐振频率、工作频率、阵元振幅、测量位置、测量角度等参数对单阵元声场声压的影响;通过仿真与实验分析谐振腔高度与阵元间相位差对驻波声场的影响,得出不同驻波谐振模式下小球的悬浮位置与各参数之间的关系;可通过调节谐振腔高度与相位差实现悬浮小球沿轴线方向上的非接触传输,实现多个物体同时悬浮并传输。最后,通过仿真与实验对非同轴阵元声场中驻波的形成与势阱位置进行研究。将阵元声波传输路径进行规划,通过仿真研究辐射面位置、辐/反射面距离、阵元倾角等几何位置参数与耦合声场之间的关系,通过实验分析几何位置参数与势阱位置的关系,总结出各参数对声场性能的影响,如:当两阵元相位差为π,两辐射面与反射面距离之和为半波长偶数倍时,谐振腔中形成驻波声场,可实现小球悬浮于该声场中的势阱位置。
[Abstract]:As a non-contact transmission technology, ultrasonic standing wave suspension transmission technology is widely used in biological, chemical, material and mechanical fields. Therefore, the contrast transducer array is divided into coaxial array element and non-coaxial array element, and the corresponding sound field performance is analyzed by simulation and experiment. The specific research contents are as follows: firstly, the theoretical analysis of the distribution law of the sound field formed by the counter transducer array is carried out, and the wave equation is deduced. In the case of coaxial of the two array elements, the sound pressure and particle velocity in the sound field are deduced. The distribution law of time average potential, sound radiation force and other parameters are analyzed, the influence of phase difference on sound field intensity is analyzed, the condition of standing wave sound field formation is obtained, the sound field formed by non-coaxial array element is analyzed in two-dimensional space theory, and the influence of phase difference on sound field intensity is analyzed. Comparing the characteristics of different transducer arrays to form sound field, when one end vibration of two arrays is not vibrating, both ends are in the same direction, and two ends are in opposite direction, the conditions for the formation of standing wave sound field are different. Secondly, The influence of resonant frequency, working frequency, array amplitude, measuring position and measuring angle on sound pressure of single array element is analyzed by simulation and experiment. The influence of the height of the resonator and the phase difference between the array elements on the standing wave sound field is analyzed by simulation and experiment, and the relationship between the suspended position of the small ball and the parameters under different standing wave resonance modes is obtained. By adjusting the height of the cavity and the phase difference, the non-contact transmission of the suspended sphere along the axis can be realized, and several objects can be suspended and transmitted simultaneously. Finally, The formation of standing wave and the position of potential well in the sound field of non-coaxial array element are studied by simulation and experiment. The transmission path of acoustic wave is planned, and the position of radiation surface and the distance between radiation and reflection surface are studied by simulation. The relationship between geometric position parameters such as dip angle of array elements and coupled sound field is analyzed experimentally, and the influence of each parameter on sound field performance is summarized by analyzing the relationship between geometric position parameters and potential well position. For example, when the phase difference of the two array elements is 蟺 and the sum of the distance between the two radiation surfaces and the reflection surface is half wavelength even, the standing wave sound field is formed in the resonator, which can realize the potential well position of the small sphere suspended in the sound field.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB552
【相似文献】
相关期刊论文 前10条
1 宋庭新;超声波声场的数值计算与仿真[J];湖北工学院学报;2004年02期
2 王秋萍;刘瑞聪;;超声清洗槽内声场分布的研究[J];兰州交通大学学报;2006年01期
3 霍彦明;李争;李永伟;王智彪;;聚焦区域高声强声场分布的测量方法研究[J];应用声学;2012年04期
4 王明洲,钱建平;有限空间辐射源声场分布特性研究[J];舰船科学技术;1995年02期
5 彭健新;周光平;梁召峰;;气泡体积比对流体中超声声场分布的影响[J];华南理工大学学报(自然科学版);2008年08期
6 乐建威;王鸿樟;;治癌用超声加热装置中柱面聚焦换能器声场[J];上海交通大学学报;1985年02期
7 温正雄;;气枪次声扫雷具声场计算及主要参数的选择[J];海军工程学院学报;1985年01期
8 李忠强,王鸿樟;球壳辐射器和相控球面阵的声场[J];声学技术;1986年03期
9 刘明;;光弹效应在声场测试中的应用[J];试验技术与试验机;1988年02期
10 林书玉,张福成,郭孝武;关于改善超声清洗声场均匀性的研究[J];应用声学;1993年02期
相关会议论文 前10条
1 陆建萍;王为标;何世堂;水永安;;表面声场分布的数值模拟[A];中国声学学会2006年全国声学学术会议论文集[C];2006年
2 吕君;赵正予;周晨;饶艳;;均匀线阵列非线性声场分布的二维数值模拟[A];泛在信息社会中的声学——中国声学学会2010年全国会员代表大会暨学术会议论文集[C];2010年
3 张军;王月兵;;高频聚焦球冠阵焦平面声场分布[A];中国声学学会2007年青年学术会议论文集(上)[C];2007年
4 吕君;赵正予;宋杨;;线性阵列的大气声场分布的研究[A];2008年全国声学学术会议论文集[C];2008年
5 王奇;陈皓;姜学平;王寅观;钱梦,
本文编号:1537285
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1537285.html