当前位置:主页 > 管理论文 > 工程管理论文 >

基于混合多属性决策和关联分析的模糊粗糙FMEA评估方法

发布时间:2018-04-01 17:07

  本文选题:失效模式与影响分析 切入点:模糊粗糙数 出处:《计算机集成制造系统》2016年11期


【摘要】:为解决面向不确定环境下的产品失效模式与影响分析(FMEA)问题,提出基于混合多属性决策和关联传播分析相集成的FMEA新方法。该方法为有效处理FMEA过程中各阶段专家的模糊性、不确定性评价信息,运用区间形式的模糊粗糙数进行建模。在此建模框架下,首先以模糊粗糙层次分析法构建风险因子权重分析矩阵,并通过自动机算法进行寻优求解得到权重向量;其次引入Kullback-Leibler散度对多准则妥协解排序法模型进行改进并用于风险优先数的计算;最后考虑到失效模式间的交互影响,构建失效模式关联传播复杂网络,通过计算关联输出度、介数、集簇系数等网络拓扑参数对风险优先数进行修正,进而对失效模式的风险性进行全面重新排序。以冶金设备专用大型齿轮箱为例,验证了该方法的可行性与有效性。
[Abstract]:In order to solve the uncertainty analysis under the environment of product failure mode and effect (FMEA), this paper presents a new method of FMEA integrated analysis of hybrid multiple attribute decision making and related communication. Based on the fuzzy expert in each stage of the method for the effective treatment of FMEA, the uncertainty of evaluation information, using fuzzy rough form of interval number modeling. This modeling framework, firstly based on fuzzy rough AHP to construct the weight of risk factors analysis matrix, and the automaton algorithm to solve optimization to get the weight vector; secondly Kullback-Leibler divergence of VIKOR model was improved and used to calculate the risk priority number; finally, considering the interaction between the modes of failure the construction, failure mode correlation propagation in complex network, by calculating the correlation output degree, betweenness, clustering coefficient and network topology parameters on the risk priority number In order to make a comprehensive reordering of the risk of failure mode, a modified large gear box for metallurgical equipment is taken as an example to verify the feasibility and effectiveness of the method.

【作者单位】: 大连海洋大学机械与动力工程学院;
【基金】:国家自然科学基金资助项目(51605067) 辽宁省自然科学基金资助项目(2015020134) 辽宁省教育厅科学研究一般资助项目(L2014274,L2014275)~~
【分类号】:TF307;TB114.2


本文编号:1696489

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1696489.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5d375***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com