外啮合齿轮泵啮合载荷的数值模拟及动力学特性分析
发布时间:2018-04-23 07:39
本文选题:外啮合齿轮泵 + 啮合载荷 ; 参考:《合肥工业大学》2017年硕士论文
【摘要】:齿轮的啮合载荷计算是关于一切齿轮系统研究的一项重要工作,是评估齿轮弯曲疲劳强度和接触疲劳强度的重要指标。齿轮是外啮合齿轮泵的核心零部件,因此齿轮的载荷计算是本文的主要工作。困油现象是齿轮泵的固有特性,齿轮泵的啮合载荷的计算须要考虑困油现象,因此本文以齿轮泵的困油现象为前提,以啮合载荷模型的建立和啮合载荷的精确仿真为目标展开研究,主要开展了以下几个方面的工作:采用公式创建法推导出齿轮泵困油面积的计算公式,并用计算机虚拟测量法验证,为后续困油压力和啮合载荷的计算和仿真做好前期准备工作。结果表明,困油面积呈周期性变化并伴随着突变。建立了考虑轮齿啮合刚度和误差的啮合载荷的数学模型,以轮齿的变形量计算出轮齿的综合啮合刚度,呈现周期性变化的,并以实例计算出周期性变化的啮合载荷,结果表明在一对齿轮啮合时,啮合载荷出现峰值;在两对齿轮啮合时,啮合载荷较平稳。建立了考虑困油压力的啮合载荷的数学模型,分析了困油压力随着位置变化对轮齿产生的阻力矩的变化。结果表明,油液对轮齿产生的阻力矩是周期性变化的,从轮齿进入啮合开始到脱离啮合位置结束。建立了啮合载荷的仿真模型,并用数值模拟的方法对啮合载荷进行求解,结果表明,不考虑困油压力时,啮合载荷呈周期性变化,每个周期内有一个峰值,即一对齿轮啮合时产生的载荷突变,与数学模型相符合。建立了齿轮泵外壳和齿轮副的模态分析有限元模型,仿真结果表明,齿轮泵外壳与齿轮副不会产生模态耦合。建立了齿轮泵内部流场的流体动力学计算模型,并用数值模拟的方法对流体内部的静压进行求解,结果表明,对于低压定量齿轮泵,内部静压变化不大,最大的静压力出现在齿轮的啮合点附近,最小静压力出现在吸油腔附近,比较符合工程实际。本文的研究工作对外啮合齿轮泵啮合载荷的精确计算提供了一种科学的方法,在齿轮泵的结构设计和噪声控制方面具有重要意义,也为普通齿轮传动载荷的计算提供了一种方法。
[Abstract]:The calculation of gear meshing load is an important work in the study of all gear systems and an important index to evaluate the bending fatigue strength and contact fatigue strength of gears. Gear is the core part of external gear pump, so the load calculation of gear is the main work in this paper. The phenomenon of oil trapping is the inherent characteristic of gear pump, and the meshing load of gear pump must be considered in the calculation of gear pump's meshing load, so this paper takes the phenomenon of gear pump's oil trap as the premise. Aiming at the establishment of meshing load model and the accurate simulation of meshing load, the main work of this paper is as follows: the formula for calculating the trapped area of gear pump is derived by formula creation method. The computer virtual measurement method is used to verify the preliminary preparation for the calculation and simulation of the trapping pressure and meshing load. The results showed that the area of trapped oil changed periodically and accompanied by mutation. A mathematical model of meshing load considering gear tooth meshing stiffness and error is established. The comprehensive meshing stiffness of gear tooth is calculated by the deformation of gear tooth, which presents periodic variation, and the periodic meshing load is calculated by an example. The results show that the meshing load is peak when a pair of gears is engaged, and the meshing load is stable when two pairs of gears are engaged. A mathematical model of meshing load considering the pressure of trapped oil was established, and the change of resistance moment of gear teeth caused by the change of pressure of trapped oil with the change of position was analyzed. The results show that the resistance moment of the oil to the gear teeth changes periodically from the beginning of the gear teeth into the meshing to the end of the disengagement position. The simulation model of meshing load is established, and the meshing load is solved by numerical simulation. The results show that the meshing load changes periodically without considering the trapped oil pressure, and there is a peak value in each cycle. That is, a pair of gears meshing the load of sudden change, consistent with the mathematical model. The modal analysis finite element model of gear pump casing and gear pair is established. The simulation results show that the gear pump housing and gear pair will not produce modal coupling. The hydrodynamic calculation model of the internal flow field of gear pump is established, and the hydrostatic pressure inside the fluid is solved by numerical simulation. The results show that the internal static pressure of the gear pump has little change for the low pressure quantitative gear pump. The maximum static pressure appears near the meshing point of the gear and the minimum static pressure near the oil suction chamber, which is more in line with the engineering practice. The research work in this paper provides a scientific method for the accurate calculation of the meshing load of external gear pump, which is of great significance in the structural design and noise control of gear pump. It also provides a method for calculating the load of common gear transmission.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH137.51
【参考文献】
相关期刊论文 前10条
1 黄鹏;;渐开线内啮合齿轮泵内齿圈内壁受液压力的计算[J];液压气动与密封;2016年03期
2 高家赫;王岩松;赵礼辉;郭辉;李金国;;变排量外齿轮泵的内流场仿真分析及卸荷槽优化[J];机械传动;2015年05期
3 邱鹞;陈国安;吴子军;李东升;;外啮合齿轮泵工作原理探究[J];液压气动与密封;2015年04期
4 赵韩;唐凯聪;黄康;孙迎波;沙发明;;基于Pro/E和ANSYS的摆线齿轮泵模态分析[J];机械传动;2015年03期
5 曹录海;任工昌;翁涛;;基于Workbench的齿轮泵轮齿有限元分析[J];机床与液压;2015年01期
6 李纪强;刘忠明;;斜齿齿轮泵啮合载荷计算方法[J];液压与气动;2014年11期
7 杨丽霞;谢东;田建涛;李晓辉;何义;;ANSYS软件在齿轮泵静力分析中的应用[J];山东交通学院学报;2014年03期
8 徐长航;吕涛;陈国明;尹树孟;;自升式平台齿轮齿条升降机构错齿优化动力学分析[J];机械工程学报;2014年19期
9 卢淑群;;多齿轮变量齿轮泵接触力理论与仿真分析[J];液压与气动;2014年02期
10 李玉龙;;齿轮泵最大困油压力解析式的建立与验证[J];农业工程学报;2013年11期
,本文编号:1791043
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1791043.html