基于超声波室内定位系统的设计与实现
发布时间:2018-05-08 05:42
本文选题:室内定位 + 虚拟现实设备 ; 参考:《西南交通大学》2017年硕士论文
【摘要】:随着移动互联网的高速发展和智能硬件的不断普及,以GNSS为代表的的室外定位技术极大地改善了人们的生产和生活方式。与此同时,室内定位也产生了广泛而切实地需求。超市的商品寻找、停车场的停车导航、地下矿井人员的定位保护、虚拟现实设备的定位追踪等生活生产的很多方面都需要进行室内定位。其中,虚拟现实设备的定位由于虚拟现实潜在的市场价值被广泛地研究。论文从现阶段各种定位技术的对比出发,发现超声波定位技术在虚拟现实设备定位中具有定位精度高、布局简单、抗干扰强、成本低等优势。然后论文具体分析了超声波定位技术的原理,然后结合虚拟现实设备的应用场景,提出了一套超声波室内定位系统。超声波室内定位系统以超声波传感器为定位核心,具体包括超声波发射子系统、超声波接收子系统、数据传送子系统和后台操控及处理中心。按照应用需求,后台操控及处理中心发出定位指令后,超声波发射子系统发射超声波信号和用于同步计时的射频信号。超声波接收子系统接收到射频信号和超声波信号后将定位数据计算出来并传送给后台操控及处理中心。后台操控及处理中心负责处理定位数据并将目标的三维坐标解算出来,然后显示给用户。数据传送子系统起到通信桥梁的作用。论文在介绍了超声波室内定位系统的设计方案后,从硬件、软件两个层面对系统的设计进行了分析。硬件部分包括系统各部分的电路设计、PCB设计和焊接调试;P CB设计在Altium Designer 10下完成。软件方面包括系统的底层软件编写、上位机编写和数据库设计;底层软件采用C语言在Keil uvision 4、IAR Embedded Workbe nch 8.20下完成;上位机采用C++语言在Qt Creater 4.2.1下完成,其中的数据处理部分使用MATLAB R2014a完成;数据库使用MySQL数据库存储定位数据。最后在实验室中搭建了系统的测试环境,进行了功能测试和结果分析。本论文设计和实现的的超声波室内定位系统经过测试,能够满足虚拟现实设备的定位需求。经过改进,也可应用于室内机器人定位、仓库用导航小车等,具有应用价值。
[Abstract]:With the rapid development of mobile Internet and the popularization of intelligent hardware, the outdoor positioning technology, represented by GNSS, has greatly improved the people's production and life style. At the same time, the indoor positioning has also produced a wide and practical demand. The search for goods in the supermarket, the parking navigation of the parking lot, the location protection of underground mine personnel, The positioning and tracking of virtual reality equipment need to be located in many aspects of living production. The location of virtual reality equipment is widely studied because of the potential market value of virtual reality. This paper, starting from the comparison of various positioning techniques at the present stage, finds that the ultrasonic positioning technology is in the position of virtual reality equipment. With the advantages of high positioning precision, simple layout, strong anti-interference and low cost, the principle of ultrasonic positioning technology is analyzed in this paper. Then a set of ultrasonic indoor positioning system is put forward in combination with the application scene of virtual reality equipment. The ultrasonic wave sensor is the core of the ultrasonic indoor positioning system, including ultrasonic emission. Sub-system, ultrasonic receiving subsystem, data transmission subsystem and background control and processing center. Ultrasonic emitter system launches ultrasonic signals and radio frequency signals for synchronous timing according to application requirements, background manipulation and processing center sends out positioning instructions. The ultrasonic receiving subsystem receives radio frequency signals and ultrasonic signals. The positioning data is calculated and transmitted to the backstage manipulation and processing center. The backstage manipulation and processing center handles the positioning data and calculates the three-dimensional coordinates of the target, then displays it to the user. The data transmission subsystem plays the role of the communication bridge. After introducing the design of the ultrasonic indoor positioning system, the paper introduces the design of the ultrasonic indoor positioning system. The design of the system is analyzed from two layers of hardware and software. The hardware part includes the circuit design of all parts of the system, the design of PCB and the welding debugging; the design of P CB is completed under the Altium Designer 10. The software includes the software of the system, the writing of the upper computer and the design of the data base; the bottom software uses the C language in Keil uVision 4. The IAR Embedded Workbe NCH 8.20 is completed; the host computer uses the C++ language in Qt Creater 4.2.1, and the data processing part is completed using MATLAB R2014a; the database uses the MySQL database to store the data. Finally, the system test environment is built in the laboratory, and the function test and result analysis are carried out. This paper is designed in this paper. And the implementation of the ultrasonic indoor positioning system after testing, can meet the positioning requirements of virtual reality equipment. After improvement, it can also be applied to indoor robot positioning, the warehouse with navigation cars, and so on, has the application value.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB559
【参考文献】
相关期刊论文 前10条
1 魏荣爵;;空气中声速的准确计算[J];南京大学学报(自然科学版);1955年01期
2 杨明欣;张杰;郑郁正;;基于STC单片机的实验开发平台的设计[J];成都信息工程学院学报;2006年03期
3 孙云霄;陈颖;;RS485总线在数据采集系统中的应用[J];工矿自动化;2006年04期
4 刘典文;;集成稳压电源的设计[J];广西物理;2008年01期
5 赵海;张宽;朱剑;李大舟;;基于TDOA的超声波测距误差分析与改进[J];东北大学学报(自然科学版);2011年06期
6 李昌禄;苏寒松;;超声波定位系统的研究[J];实验室研究与探索;2013年02期
7 刘成;;LBS定位技术研究与发展现状[J];导航定位学报;2013年01期
8 蒋建平;陈辉;;基于CC2530的ZigBee无线城市路灯控制系统的设计[J];测控技术;2012年09期
9 王敬东;贲伟;王子瑞;马骏;;基于ZigBee技术的TDOA定位系统设计[J];测控技术;2013年03期
10 王凡;彭勇;;基于TDOA的室内超声波定位方法的改进[J];计算机技术与发展;2014年06期
,本文编号:1860185
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1860185.html