灰狼算法在典型车间调度问题中的应用研究
本文选题:典型车间调度问题 + 不相关并行机调度 ; 参考:《昆明理工大学》2017年硕士论文
【摘要】:生产调度是制造业企业生产管理的重要工作之一。其中,并行机车间调度问题和置换流水车间调度问题是两类典型的车间调度问题,它们是n个工件在m台机器上加工的许多实际生产系统生产调度问题的简化模型。其中,前者的特征是n个的工件中的每个工件可以在m台机器中的任意一台上进行加工,而后者的特征是n个工件以相同顺序经过m台机器进行加工。业已证明3台以上机器的两类典型车间调度问题即为NP难题,也是目前生产调度研究的热点问题。近年来,随着计算机技术和人工智能的飞速发展,生产调度的智能算法得到了越来越广泛的关注。灰狼算法就是一种新近提出的智能优化算法,由于其有效性高效性,已被应用于求解多种困难的组合优化问题。本文运用灰狼算法对以上两种典型车间调度问题进行研究。首先,以最大完工时间为优化目标,针对不相关并行机调度问题和置换流水车间调度问题,利用灰狼算法思想,基于工序的编码方式随机产生初始种群,采用高效的更新算子分别实现对30个随机产生的实例和240个标准测试实例的测试,并将测试结果与遗传算法进行对比,实验结果表明了灰狼算法的可行性与有效性。其次,以最大完工时间和总流程时间为优化目标,针对多目标置换流水车间调度问题,利用多目标灰狼算法思想,采用基于工序的编码方式,使用构造启发式算法NEH和随机产生两种方式产生初始种群,实现对24个实例的测试,并将结果与经典多目标算法——SPEA2算法进行比较,测试结果表明了多目标灰狼算法的优越性。最后,将求解置换流水车间调度问题的灰狼算法应用于解决工程实例,相比回溯搜索算法最优解加快430s,使得总完工时间缩短了 9.75%,进一步验证了灰狼算法的优越性。
[Abstract]:Production scheduling is one of the important work of manufacturing enterprise production management. Among them, the parallel machine shop scheduling problem and the replacement flow shop scheduling problem are two kinds of typical job shop scheduling problems. They are the simplified models of the production scheduling problems of many practical production systems in which n jobs are processed on m machines. The feature of the former is that each workpiece of n workpieces can be machined on any one of m machines, while the latter is that n workpieces are machined by m machines in the same order. It has been proved that two typical job shop scheduling problems for more than three machines are NP problems and are also hot issues in production scheduling research. In recent years, with the rapid development of computer technology and artificial intelligence, the intelligent algorithm of production scheduling has been paid more and more attention. Grey wolf algorithm is a newly proposed intelligent optimization algorithm. Because of its high efficiency and efficiency, it has been applied to solve a variety of difficult combinatorial optimization problems. In this paper, the gray wolf algorithm is used to study the above two typical job shop scheduling problems. Firstly, aiming at the scheduling problem of unrelated parallel machines and the replacement flow shop scheduling problem, taking the maximum completion time as the optimization goal, the initial population is generated randomly based on the coding method based on the gray wolf algorithm. An efficient update operator is used to test 30 randomly generated and 240 standard test cases, and the test results are compared with the genetic algorithm. The experimental results show the feasibility and effectiveness of the gray wolf algorithm. Secondly, taking the maximum completion time and the total flow time as the optimization goal, aiming at the multi-objective replacement flow shop scheduling problem, using the multi-objective gray wolf algorithm, the coding method based on the working procedure is adopted. The initial population is generated by constructing heuristic algorithm NEH and random generation method, and the test results of 24 instances are realized, and the results are compared with the classical multi-objective algorithm, SPEA2 algorithm. The test results show the superiority of the multi-objective gray wolf algorithm. Finally, the gray wolf algorithm is applied to solve the replacement flow shop scheduling problem. Compared with the backtracking search algorithm, the optimal solution is 430s faster, which shortens the total completion time by 9.75, and further verifies the superiority of the gray wolf algorithm.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB49
【参考文献】
相关期刊论文 前10条
1 吴楚格;王凌;郑晓龙;;求解不相关并行机调度的一种自适应分布估计算法[J];控制与决策;2016年12期
2 梅攀;吴中元;;多品种非同等并行机作业车间能效优化调度[J];机电工程技术;2016年09期
3 毛森茂;瞿凯平;陈艺璇;程乐峰;余涛;;基于灰狼多目标算法的电网碳-能复合流优化调度[J];新型工业化;2016年09期
4 陈昌帅;;二进制灰狼优化算法的研究与分析[J];信息系统工程;2016年07期
5 杨红光;刘建生;;一种结合灰狼优化和K-均值的混合聚类算法[J];江西理工大学学报;2015年05期
6 齐学梅;王宏涛;陈付龙;罗永龙;;求解多目标PFSP的改进遗传算法[J];计算机工程与应用;2015年11期
7 吕新桥;廖天龙;;基于灰狼优化算法的置换流水线车间调度[J];武汉理工大学学报;2015年05期
8 陈可嘉;周晓敏;;多目标置换流水车间调度的改进食物链算法[J];中国机械工程;2015年03期
9 王腾;周炳海;;Scheduling Multiple Orders per Job with Multiple Constraints on Identical Parallel Machines[J];Journal of Donghua University(English Edition);2013年06期
10 张刚志;周炳海;;带换模约束的非等效并行机作业族调度方法[J];计算机集成制造系统;2013年12期
相关硕士学位论文 前3条
1 林群;回溯搜索算法的改进及其工程应用[D];华中科技大学;2015年
2 历莉;基于混合离散微粒群算法求解复杂并行机生产调度问题[D];昆明理工大学;2015年
3 莫祯贞;改进粒子群算法在模糊环境下平行机批调度问题中的应用研究[D];中国科学技术大学;2010年
,本文编号:1863957
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1863957.html