当前位置:主页 > 管理论文 > 工程管理论文 >

基于ZYNQ的掌上超声成像系统前端设计与实现

发布时间:2018-05-09 01:30

  本文选题:掌上超声成像 + B超前端 ; 参考:《哈尔滨工业大学》2017年硕士论文


【摘要】:超声成像具有无损伤成像、实时动态成像、成像系统简洁等诸多优点,在远程医疗和战地医疗等方面有着十分广阔的应用前景。芯片集成度的提高,功耗的降低使得掌上超声成像系统的实现成为可能。目前掌上超声成像系统正朝着无线化和人机交互友好化两个方向发展,国内掌上超声成像系统发展迅速,但前端系统的独立自主设计与实现技术仍然薄弱。在此背景下,本课题对掌上超声成像系统的前端进行了设计和实现,在降低超声成像设备成本的同时,为掌上超声成像系统的国产化积累研发经验和技术基础。本课题设计并实现了一款32通道掌上超声成像系统前端的数据采集及信号处理算法。根据系统功能,查阅相关资料,确定了以ZYNQ、HDL6M06531和MAX2082为核心芯片、通过Wi-Fi传输数据和无线充电的整体系统硬件方案,同时确定了整个系统的性能指标:分辨率、尺寸和系统功耗。针对选则的芯片,依次对换能器阵元匹配电路、超声收发相关电路、ZYNQ相关电路和电源电路的原理图进行设计。在此基础上,根据多层印制电路板的设计规则、层叠和布局,完成了整个系统主体功能的8层核心电路板的设计。按照超声成像的逻辑顺序,利用FPGA依次实现了阵元的整序控制、电子聚焦、数字波束合成和数字解调等超声信号处理算法,并通过状态机将各个模块按顺序串联起来,构成完整的超声成像算法系统体系。针对这些算法,给出了实现的流程和仿真结果,并对仿真结果进行了分析。按照电路功能和工作顺序,对整个系统硬件电路中的电源电路、ZYNQ、HDL6M06531和MAX2082进行了调试,调试结果与预期一致。在完成硬件电路调试的基础上,按照先接收后发射的顺序,对数字波束合成、数字解调、阵元的整序控制、电子聚焦和状态机等各个模块逐一调试。本课题设计的前端系统在保证成像质量的同时,缩小了整个设备的尺寸,提高了超声成像设备的集成度和稳定性,优化了超声信号处理算法,降低了系统的功耗,为多通道多功能无线掌上超声成像系统的开发和实现探索出方向。
[Abstract]:Ultrasonic imaging has many advantages, such as no damage imaging, real-time dynamic imaging, simple imaging system and so on. It has a very broad application prospect in telemedicine and field medicine. With the improvement of chip integration and the reduction of power consumption, the realization of handheld ultrasonic imaging system is possible. At present, the handheld ultrasonic imaging system is developing towards the direction of wireless and human-computer interaction friendly. The domestic ultrasonic imaging system is developing rapidly, but the independent design and implementation technology of the front-end system is still weak. Under this background, this paper designs and implements the front end of the ultrasonic imaging system on the palmtop, while reducing the cost of the ultrasonic imaging equipment, it accumulates the research and development experience and the technical foundation for the localization of the ultrasonic imaging system on the palm of the hand at the same time. This paper designs and implements a 32-channel ultrasonic imaging system front-end data acquisition and signal processing algorithm. According to the function of the system, referring to the related data, the hardware scheme of the whole system, which uses ZYNQY HDL6M06531 and MAX2082 as the core chip, transmitting data through Wi-Fi and wireless charging, is determined, and the performance indexes of the whole system are determined: resolution, size and system power consumption. The principle diagram of transducer array element matching circuit ultrasonic transceiver correlation circuit ZYNQ correlator circuit and power supply circuit are designed for the selected chip. On this basis, according to the design rules, stacking and layout of the multi-layer printed circuit board, the design of the 8-layer core circuit board of the main function of the whole system is completed. According to the logical sequence of ultrasonic imaging, the ultrasonic signal processing algorithms such as array element sequence control, electronic focusing, digital beam synthesis and digital demodulation are realized by FPGA in turn, and each module is connected in sequence by state machine. A complete system of ultrasonic imaging algorithm is constructed. In view of these algorithms, the implementation flow and simulation results are given, and the simulation results are analyzed. According to the function and working sequence of the circuit, the power supply circuit of the whole system hardware circuit is debugged, and the debugging results are in accordance with the expectation. On the basis of hardware circuit debugging, every module of digital beam synthesis, digital demodulation, array element sequence control, electronic focusing and state machine are debugged one by one according to the order of receiving and then transmitting. The front-end system designed in this paper not only guarantees the imaging quality, but also reduces the size of the whole equipment, improves the integration and stability of the ultrasonic imaging equipment, optimizes the ultrasonic signal processing algorithm, and reduces the power consumption of the system. To explore the direction for the development and implementation of multi-channel multi-function wireless palmtop ultrasonic imaging system.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TB559

【参考文献】

相关期刊论文 前6条

1 彭思敏;黄卫红;陈体芹;;便携式超声检查在外伤救治中的应用价值[J];新医学;2011年07期

2 赵琦;;数字化超声波诊断在临床上的应用[J];中外医疗;2010年02期

3 幸坤涛;刘晓文;;基于8通道高压开关HV20220的B超探头电路设计[J];电子世界;2009年07期

4 周源;;超声技术在临床的应用及展望[J];医疗设备信息;2006年05期

5 刘贵栋,沈毅,王艳;医学超声谐波成像技术研究进展[J];哈尔滨工业大学学报;2004年05期

6 黄晓玲;超声成像新技术的物理声学基础及其应用[J];中国医学影像技术;2002年05期

相关博士学位论文 前3条

1 傅娟;医学超声成像中的编码激励技术及其性能优化的研究[D];华南理工大学;2014年

2 盛磊;微波热疗超声监测系统及关键技术研究[D];北京工业大学;2013年

3 徐海东;后向散射超声无损测温设备关键技术的研究与实现[D];清华大学;2004年

相关硕士学位论文 前10条

1 么立宝;基于Zynq的车牌识别系统的研究[D];大连海事大学;2014年

2 张龙龙;全数字超声成像系统关键部分的优化设计与实现[D];浙江大学;2013年

3 李帅;高集成度B超前端设计与实现[D];哈尔滨工业大学;2012年

4 许琴;超声成像中波束形成算法研究[D];重庆大学;2012年

5 周乾;基于多核处理器的图像处理技术研究与实现[D];合肥工业大学;2012年

6 安然;基于AD9273的医用全数字B超成像系统前端电路设计与研究[D];华中科技大学;2011年

7 熊立智;高精度数据采集系统设计与实现[D];电子科技大学;2010年

8 祝鸣涛;可重构模拟电路设计与应用研究[D];南京航空航天大学;2010年

9 刘建一;基于ARM的超声波测距系统研究[D];河北工程大学;2009年

10 周代明;基于FPGA的B型超声成像系统的设计与实现[D];中南大学;2009年



本文编号:1863982

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1863982.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d9c68***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com