面向复杂产品作业流程仿真的扩展场景图构建与解析技术及其应用研究
本文选题:作业流程仿真 + 场景图 ; 参考:《浙江大学》2017年硕士论文
【摘要】:复杂产品是机械、液压、电子、控制等多学科融合的系统,通常包含多个子系统,组成零部件数量众多、结构复杂。采用数字样机作业流程仿真技术可以直观地展示复杂产品的作业过程,从而验证产品作业功能设计的正确性。目前,作业流程仿真系统通常只是对作业动作的虚拟仿真,无法集成多学科仿真信息。由于复杂产品自身结构的复杂性,其作业流程仿真的流畅性也无法保障。本文针对上述问题,运用扩展场景图技术,实现了作业流程仿真多层级几何模型与多学科仿真信息的集成。本文主要内容包括:第一章介绍了复杂产品作业流程仿真的关键技术,综述了国内外研究现状,阐述了本文的研究内容和组织架构。第二章提出了复杂产品多学科集成扩展场景图的构建方法。首先分析传统场景图在多学科作业流程仿真中的不足,对场景图中的多学科数字样机节点进行了扩展;然后对扩展的多层级几何节点和多学科行为节点给出了形式化描述;最后构建了作业流程仿真的扩展场景图,实现了复杂产品多学科仿真模型的集成,为实现多学科集成的作业流程仿真奠定了基础。第三章提出了面向几何节点生成的装配体多层级筒化方法。首先基于特征识别对装配体实体模型的圆角过渡特征进行平角化,对装配孔与微小孔特征进行修补简化;然后将实体模型网格化,通过高斯映射对装配体网格模型进行面片聚类分割,经过多视点渲染识别内部隐藏零件和面片;最后进行装配模型的多层次细节网格简化,得到装配体多层级模型。第四章提出了基于CAE数据驱动的多学科行为节点解析方法。通过扩展场景图中多学科仿真行为节点完成了多学科CAE分析数据的集成,通过节点更新遍历实现了机构运动、云图绘制、流线绘制、曲线绘制仿真行为在作业流程仿真过程中的同步集成,最终实现了复杂产品多学科集成的作业流程仿真。第五章开发了工业汽轮机作业流程仿真系统,介绍了系统的架构和仿真的流程,实现了汽轮机多工况下的多学科集成作业仿真。第六章对论文的主要研究工作和创新成果进行了总结,并对今后的研究工作进行了展望。
[Abstract]:Complex product is a multi-disciplinary system of mechanical, hydraulic, electronic, control and so on. It usually contains many subsystems, which make up a large number of parts and complex structure. The operation process of complex products can be displayed intuitively by using digital prototyping process simulation technology, and the correctness of product job function design can be verified. At present, the job flow simulation system is usually only the virtual simulation of the job action, and can not integrate the multidisciplinary simulation information. Because of the complexity of the complex product structure, the fluency of the job flow simulation can not be guaranteed. In order to solve the above problems, the integration of multi-level geometry model of job flow simulation and multidisciplinary simulation information is realized by using extended scene diagram technology. The main contents of this paper are as follows: the first chapter introduces the key technologies of complex product process simulation, summarizes the domestic and foreign research situation, and expounds the research content and organization structure of this paper. In the second chapter, the method of constructing complex product multidisciplinary integration extended scene diagram is proposed. Firstly, the shortcomings of the traditional scene diagram in the simulation of multidisciplinary job flow are analyzed, and the multi-disciplinary digital prototype nodes in the scene diagram are extended, and then the extended multi-level geometric nodes and multi-disciplinary behavior nodes are formalized. Finally, the extended scene diagram of job process simulation is constructed, and the integration of multidisciplinary simulation model of complex products is realized, which lays a foundation for the implementation of multidisciplinary integrated job flow simulation. In chapter 3, a multilevel method for geometric node generation is proposed. Firstly, based on feature recognition, the corner transition feature of assembly entity model is flattened, and the features of assembly hole and small hole are repaired and simplified, and then the solid model is meshed. The assembly mesh model is segmented by Gao Si mapping and identified by multi-view rendering. Finally, the multi-level detail mesh of assembly model is simplified and the assembly multi-level model is obtained. In chapter 4, a multi-disciplinary behavior node analysis method based on CAE data-driven is proposed. The integration of multidisciplinary CAE analysis data is completed by extending the multi-disciplinary simulation behavior nodes in the scene graph, and the mechanism motion, cloud drawing, streamline drawing are realized by node updating traversal. The synchronous integration of curve drawing simulation behavior in the process of job process simulation finally realizes the multidisciplinary integration of complex product job flow simulation. In the fifth chapter, the simulation system of industrial steam turbine operation flow is developed. The architecture and simulation flow of the system are introduced, and the multidisciplinary integrated operation simulation of steam turbine under multi-working conditions is realized. The sixth chapter summarizes the main research work and innovation results, and prospects the future research work.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB472;TP391.9
【相似文献】
相关期刊论文 前10条
1 薛闯;贾建军;舒嵘;王建宇;;装配体结构有限元分析中的螺钉连接模型[J];科学技术与工程;2006年07期
2 常智勇;周方云;周孝伦;袁义;;可展回转型装配体管道展开技术[J];计算机集成制造系统;2010年09期
3 陶松桥;黄正东;;基于属性邻接图匹配的装配体模型搜索方法[J];计算机辅助设计与图形学学报;2011年02期
4 李海龙,董金祥,葛建新,何志均;基于约束的装配体技术[J];计算机辅助设计与图形学学报;1997年03期
5 王波,王宁生;装配体拆卸序列的自动生成及优化研究[J];淮海工学院学报(自然科学版);2005年01期
6 ;您设计的产品有多环保?[J];新技术新工艺;2009年03期
7 王挺昊,王君英,高磊,王静蕾;可集成的装配体精度分析工具的研究[J];机械设计与制造;2001年06期
8 杨培林,陈晓南,庞宣明;装配体中的联接关系及子装配生成方法的研究[J];西安交通大学学报;2004年11期
9 周炜;郑建荣;颜建军;;基于子图同构与事例匹配的装配体局部结构相似性分析[J];计算机辅助设计与图形学学报;2010年02期
10 闵少松;朱晓军;朱锡;;装配体可行拆卸操作生成[J];船海工程;2010年05期
相关会议论文 前7条
1 刚守堂;楚金甫;唐喜林;;用三维有限元法分析计算复杂装配体单横摆悬架应力[A];第五届河南省汽车工程科技学术研讨会论文集[C];2008年
2 张,
本文编号:1895773
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/1895773.html