GaN基LED不同功能层的MOCVD生长及其性能研究
本文选题:发光二极管 + GaN ; 参考:《太原理工大学》2016年博士论文
【摘要】:LED作为第三代光源,具有节能、环保、寿命长、稳定性高、体积小等优点,可以广泛应用于各种指示、显示、装饰、背光源和固态照明等领域。自中村修二成功制备了宽禁带GaN基半导体材料之后,具有商业应用价值的蓝光LED获得实现,LED在光效提升和成本降低方面取得了飞速的发展。但LED仍有一些问题需要进一步解决和完善,例如,外延生长参数对GaN晶体质量的影响机制还不明确;高空穴浓度低电阻率p型GaN的制备困难;InGaN与GaN的物理化学性能差异使得高质量量子阱生长困难等。本论文从以上提出的问题出发,对GaN基LED外延结构各功能层进行生长,探究了工艺参数和结构参数对不同功能层结构性质以及光电性能的影响,并对其影响机制做了深入的分析。具体内容如下:1、研究了形核层厚度(分别为15、25和45 nm)对平面蓝宝石衬底上生长的GaN薄膜晶体质量的影响。高分辨X射线衍射(HRXRD)结果表明:当形核层厚度为25 nm时,GaN外延薄膜的(002)和(102)面的HRXRD谱的半高宽(FWHM)最小,分别为267和284 arcsec。原子力显微镜(AFM)结果表明:形核层退火后,样品表面呈岛状结构。形核层厚度的增加有利于获得大尺寸的岛,但是岛的均匀性较差。尺寸大、均匀性好、密度低的形核岛对GaN外延薄膜的晶体质量是最有利的,这可采用位错的产生和演变机制来解释影响机理。调控形核层厚度是控制岛的尺寸和密度的有效手段之一,因此,形核层厚度能够显著影响gan薄膜的晶体质量。2、研究了形核层厚度对图形蓝宝石衬底上生长的gan薄膜晶体质量的影响。扫描电子显微镜(sem)和hrxrd结果表明:三维生长过程中形核点的位置对gan薄膜的晶体质量有明显的影响,当三维生长形核点的位置处于图形的侧壁时不利于gan薄膜晶体质量的提高,这是由于侧壁上长大的形核岛晶体取向存在差异;三维生长形核点的位置处于图形的间隙时有利于获得高质量的gan晶体,这时形核岛的晶体取向一致,生长的gan表面较平整,晶体质量较高。形核层的厚度能够显著影响形核点的位置,因此其对gan的晶体质量有重要的影响。3、解释了轻si掺杂gan中较高的载流子迁移率以及较强的黄带发光峰强度的物理机制。结果表明:载流子迁移率随着载流子浓度的升高呈现出先增加后降低的变化趋势,这种变化源自于电离杂质对位错散射的屏蔽和电离杂质散射的增强。在低掺杂浓度下(载流子浓度为2.37×1017cm-3),电离杂质对位错散射的屏蔽作用处于主导地位,从而导致迁移率的骤升。在高的掺杂浓度下(载流子浓度为9.73×1018cm-3),电离杂质散射的增强导致载流子迁移率的降低。高的迁移率导致光生非平衡载流子的扩散长度增加,从而引起更多的缺陷参与到复合中去,导致轻si掺杂gan的黄带发光峰强度增强。4、研究了mg/ga比对p型gan光电性能的影响。结果表明:当mg/ga比为2%时,p型gan可以获得最高的空穴浓度4.2×1017cm-3。当mg/ga比超过了2%时,会形成位于深施主能级的mgga-vn,起自补偿作用,此时,440nm的蓝光发光峰会出现,并且随着mg/ga比的不断增大,440nm的蓝光发光峰逐渐增强。同时,较大的Mg/Ga比会导致p型GaN表面出现颗粒状的物质,并且随着比值的增加,颗粒的尺寸增大。结果表明在重掺杂状态下,Mg杂质并不是全部以受主状态存在,而是部分以深施主状态存在。5、研究了阱层厚度对蓝光InGaN/GaN量子阱性能的影响。结果表明:在相同的激发功率下,随着阱厚的增加,光致发光谱(PL)发光波长出现红移,并且激发功率越大,红移程度越弱。随着阱厚的增加,对于较薄的量子阱(1.8和2.7 nm),PL发光波长的红移是由带隙填充效应引起的;对于较厚的量子阱(3.6和4.5 nm),PL发光波长的红移是由极化场屏蔽效应引起的。阱最薄的样品(1.8 nm)由于其极化效应最弱,EL谱具有最高的发光强度,但其发光波长较短仅有430 nm,比标准的蓝光波长(450 nm)蓝移了20 nm。虽然,可以通过降低生长温度或增加In源流量的方法使其发光波长变为450 nm,但其晶体质量会变差,导致EL发光强度比2.7 nm阱厚的样品低,因此,在标准的蓝光波段2.7 nm为较理想的阱厚。6、研究了量子阱中势阱层的生长速率对绿光InGaN/GaN量子阱性能的影响。HRXRD结果表明:随着势阱层生长速率的提高,量子阱的界面质量不断恶化。AFM结果表明:随着阱层生长速率的提高,量子阱表面开始出现裂纹,并且裂纹的尺寸逐渐增大。PL结果表明:在低的生长速率下,PL发光强度会明显提高,FWHM变窄,发光波长蓝移。以上结果表明降低量子阱的生长速率使势阱中In组分分布更均匀,有利于获得陡峭的量子阱界面和较平整的量子阱表面。
[Abstract]:LED, as the third generation light source, has the advantages of energy saving, environmental protection, long life, high stability and small volume. It can be widely used in various directions, display, decoration, backlight and solid state lighting. Since Nakamura Shuji has successfully prepared the wide band gap GaN based semiconductor materials, the blue light LED with commercial application value is realized, and LED is in light effect. The improvement and cost reduction have made rapid progress. However, there are still some problems to be solved and improved in LED. For example, the influence mechanism of the epitaxial growth parameters on the quality of GaN crystal is not clear; the preparation of P GaN with low resistivity at high altitude is difficult, and the difference of physical and chemical properties between InGaN and GaN makes the high quality quantum well growth stranded. In this paper, from the above questions, the function layer of GaN based LED epitaxial structure is grown, and the influence of process parameters and structural parameters on the structure and photoelectric properties of different functional layers is explored, and the influence mechanism is deeply analyzed. The specific contents are as follows: 1, the thickness of the nucleation layer (15,25 and 45, respectively) Nm) effect on the crystal quality of the GaN film grown on a flat sapphire substrate. The results of high resolution X ray diffraction (HRXRD) show that when the thickness of the nucleation layer is 25 nm, the HRXRD spectrum of the GaN epitaxial film is the smallest half width (FWHM) of the (002) and (102) surface, and the results of the 267 and 284 arcsec. atomic force microscopy (AFM) respectively indicate that after the nucleation layer is annealed, the sample is annealed. The increase of the thickness of the nucleation layer is beneficial to the large size of the island, but the uniformity of the island is poor. The size, uniformity, and the low density of the nucleation island are the most favorable to the crystal quality of the GaN epitaxial film, which can be used to explain the mechanism of the influence of the dislocation formation and evolution. One of the effective means of size and density, therefore, the thickness of the nucleation layer can significantly influence the crystal mass of the GaN film.2. The effect of the thickness of the nucleation layer on the crystal quality of the GaN film grown on a graphic sapphire substrate is studied. The scanning electron microscope (SEM) and hrxrd results show that the position of the nucleation point in the three-dimensional growth process is on the crystal of the GaN film. The body mass has an obvious effect. When the position of the three-dimensional growth nucleation point is in the side wall of the figure, it is not conducive to the improvement of the crystal quality of the GaN film, which is due to the difference in the crystal orientation of the nucleated Island grown on the side wall; the position of the three dimensional growth nucleation point is favorable for obtaining high quality GaN crystals when the space of the shape of the nucleation point is in the shape of the shape. The crystal orientation is the same, the growth of the GaN surface is more smooth and the crystal quality is higher. The thickness of the nucleation layer can affect the position of the nucleation point significantly. Therefore, it has an important influence on the crystal quality of Gan,.3, explaining the high carrier mobility in the light Si doped Gan and the strong physical mechanism of the intensity of the yellow band luminescence peak. The results show that the carrier is the carrier. The migration rate increases first and then decreases with the increase of carrier concentration, which is derived from the shielding of the ionization impurity to the dislocation scattering and the enhancement of the ionizing impurity scattering. Under the low doping concentration (the carrier concentration is 2.37 * 1017cm-3), the shielding effect of the ionized impurity to the dislocation scattering is leading. At a high doping concentration (the carrier concentration is 9.73 x 1018cm-3), the enhancement of the ionized impurity scattering leads to the decrease of the carrier mobility. High mobility leads to the increase in the diffusion length of the unbalanced carrier, which causes more defects to participate in the complex, leading to the yellow band luminescence peak intensity of the light Si doped Gan. The effect of mg/ga on the photoelectric performance of P Gan is studied. The result shows that when the mg/ga ratio is 2%, the P type Gan can obtain the highest hole concentration of 4.2 x 1017cm-3. when the mg/ga ratio exceeds 2%, and it will form a mgga-vn that is located in the deep donor level. At this time, the 440nm blue light summit appears, and as the mg/ga ratio is not. At the same time, the blue light peak of 440nm increases gradually. At the same time, the larger Mg/Ga ratio leads to the appearance of granular material on the surface of the P type GaN, and the size of the particles increases with the increase of the ratio. The result shows that the Mg impurity is not all in the main state under the heavy doping state, but a part is.5 in the deep donor state, and the well is studied in the well. The effect of layer thickness on the performance of blue light InGaN/GaN quantum well shows that with the same excitation power, with the increase of the well thickness, the luminescent wavelength of photoluminescence spectrum (PL) appears red shift, and the greater the excitation power, the weaker the degree of red shift. With the increase of the well thickness, the red shift of the PL luminescence wavelength is from the band gap for the thinner quantum well (1.8 and 2.7 nm). For the thicker quantum wells (3.6 and 4.5 nm), the red shift of the PL luminescence wavelength is caused by the shielding effect of the polarization field. The thinnest well sample (1.8 nm) has the highest luminescence intensity because of its weakest polarization effect, but its luminescence wavelength is only 430 nm, which is 20 nm. than the standard blue light wavelength (450 nm). The luminescence wavelength can be reduced to 450 nm by reducing the growth temperature or increasing the flow rate of the In source, but the crystal quality will become worse, which leads to the lower EL luminescence intensity than the 2.7 nm well thickness. Therefore, the standard blue band 2.7 nm is an ideal well thickness.6. The growth rate of the potential well layer in the quantum well is studied on the green InGaN/GaN quantum well. The effect of.HRXRD shows that with the increase of the growth rate of the potential well layer, the interfacial mass of the quantum well is deteriorating.AFM results. The results show that the crack in the quantum well surface begins to appear with the increase of the growth rate of the well layer, and the size of the crack increases gradually.PL results show that the luminescence intensity of PL will be obviously increased at low growth rate, FWH M is narrower and the luminescence wavelength is blue shift. The above results show that the reduction of the growth rate of the quantum well makes the distribution of In components more uniform in the potential well, which is beneficial to obtaining a steep quantum well interface and a more smooth quantum well surface.
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TB383.2
【相似文献】
相关期刊论文 前10条
1 熊家炯,朱嘉麟;半导体超晶格、量子阱材料的进展[J];材料科学进展;1990年02期
2 郝剑红;闫发旺;李有成;;双抛量子阱中的类似“δ”势结构[J];河北科技大学学报;1998年04期
3 许怀哲;;用有限单元法计算量子阱结构本征值[J];西安石油大学学报(自然科学版);1991年04期
4 潘继环;苏安;蒙成举;高英俊;;垒层周期不对称度对光量子阱透射谱的影响[J];激光与光电子学进展;2014年01期
5 刘艳萍,程秀凤,冯名诚;准一维有机量子阱特征[J];山东建筑工程学院学报;2002年01期
6 刘金锋;刘忠良;任鹏;徐彭寿;陈秀芳;徐现刚;;6H-SiC/3C-SiC/6H-SiC量子阱结构制备及其发光特性[J];物理化学学报;2008年04期
7 刘文莉;何修军;唐婷婷;;一维单势垒光量子阱中多通道特性分析[J];压电与声光;2014年04期
8 廖凌宏;周志文;李成;陈松岩;赖虹凯;余金中;王启明;;Si_(0.75)Ge_(0.25)虚衬底上应变补偿Si/Si_(0.62)Ge_(0.38)量子阱发光[J];材料科学与工程学报;2009年01期
9 郭海峰;哈斯花;朱俊;;应变GaN/Al_xGa_(1-x)N量子阱中电子的跃迁能量[J];功能材料;2011年S2期
10 段树坤;InP系量子阱结构的MOVPE生长[J];稀有金属;1994年04期
相关会议论文 前10条
1 万仁刚;张同意;;非对称量子阱中基于隧穿诱导增强交叉相位调制的锥辐射[A];第十五届全国量子光学学术报告会报告摘要集[C];2012年
2 苏雪梅;;GaAs/AlGaAs非对称耦合双量子阱子带跃迁间Fano干涉效应及其色散性质[A];“加入WTO和科学技术与吉林经济发展——机遇·挑战·责任”吉林省第二届科学技术学术年会论文集(上)[C];2002年
3 宁永强;孙艳芳;李特;秦莉;晏长岭;王超;刘云;王立军;;周期增益量子阱大功率垂直腔面发射激光器[A];全国第十二次光纤通信暨第十三届集成光学学术会议论文集[C];2005年
4 廖辉;陈伟华;李丁;李睿;杨志坚;张国义;胡晓东;;三元系和四元系GaN基量子阱结构的显微结构研究[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
5 李超荣;吕威;张泽;;InGaN/GaN量子阱结构的应变弛豫临界厚度、行为以及对物理性能的影响[A];第十三届全国电子显微学会议论文集[C];2004年
6 卜涛;李福利;;基于零平均折射率带隙的光量子阱结构的透射特性[A];第十三届全国量子光学学术报告会论文摘要集[C];2008年
7 朱岩;倪海桥;王海莉;贺继方;李密峰;尚向军;牛智川;;GaAs基异变量子阱[A];中国光学学会2010年光学大会论文集[C];2010年
8 李俊泽;陶岳彬;陈志忠;姜显哲;付星星;王溯源;吴洁君;于彤军;张国义;;低铟夹层对量子阱发光的影响研究[A];第十二届全国MOCVD学术会议论文集[C];2012年
9 闫东鹏;陆军;卫敏;段雪;;基于插层组装材料的多重量子阱结构理论设计与分子模拟[A];中国化学会第27届学术年会第14分会场摘要集[C];2010年
10 哈斯花;班士良;;应变闪锌矿(001)取向GaN/AlGaN量子阱中受屏蔽激子的压力效应[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
相关博士学位论文 前10条
1 李倩;量子阱红外探测器的等离激元微腔光耦合研究[D];中国科学院研究生院(上海技术物理研究所);2015年
2 李毅;Ⅲ族氮化物量子阱发光特性的研究[D];南京大学;2013年
3 Muhammad Ashfaq Jamil;脉冲激光沉积制备ZnO基量子阱及其光学性质研究[D];大连理工大学;2016年
4 谷卓;三元混晶纤锌矿量子阱中电子带间跃迁及迁移率[D];内蒙古大学;2017年
5 杨浩军;Ⅲ-N半导体光电探测器的载流子输运和材料生长研究[D];中国科学院大学(中国科学院物理研究所);2017年
6 尚林;GaN基LED不同功能层的MOCVD生长及其性能研究[D];太原理工大学;2016年
7 谢耀平;金属量子阱系统和金纳米结构催化效应的第一性原理研究[D];复旦大学;2009年
8 朱俊;应变纤锌矿量子阱中的电子态[D];内蒙古大学;2012年
9 屈媛;纤锌矿氮化物量子阱中电子迁移率及应变和压力调制[D];内蒙古大学;2010年
10 徐枝新;耦合量子阱能级特性与结构优化的研究[D];浙江大学;2006年
相关硕士学位论文 前10条
1 蔡镇准;基于耦合量子阱的GaN基垂直结构LED器件研究[D];华南理工大学;2015年
2 李志强;纤锌矿ZnO/Mg_xZn_(1-x)O量子阱中阱宽和组分对极化子效应的影响[D];内蒙古师范大学;2015年
3 贾慧民;InGaAsSb/AlGaAsSb量子阱结构及光谱分析[D];长春理工大学;2014年
4 马双庆;GaN基紫外LED多量子阱结构优化研究[D];西安电子科技大学;2014年
5 丁娟;GaN基紫外LED的光致发光谱分析[D];西安电子科技大学;2014年
6 史辰恬;InGaN量子阱中的载流子横向迁移效应[D];南京大学;2016年
7 詹小红;InGaAs量子阱半导体薄片激光器芯片处理及光谱特性[D];重庆师范大学;2016年
8 王蕊;非对称耦合双量子阱GaAs/Al_xGa_(1-x)As中的激子态[D];内蒙古大学;2016年
9 白丹;氮化镓量子阱波导及波导集成器件的研究[D];南京邮电大学;2016年
10 陈蛟龙;GaN基长波紫外LED多量子阱结构调整对光效的影响[D];西安电子科技大学;2015年
,本文编号:2049952
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2049952.html