端基标记法研究受限体系PMMA扩散行为与基底效应的传递深度
[Abstract]:Polymer film materials have been widely used in the field of nanomaterials in recent years because of their excellent properties. When the thickness of polymer film decreases to the same size as the molecular chain, the physical properties of polymer will deviate from the bulk. Molecular chain motion is an important factor determining the physical properties of polymer nanomaterials (such as thermal stability). Molecular diffusion behavior of polymer-confined thin films can provide theoretical guidance for the processing design and performance control of nano-materials. At the same time, polymer thin films are mostly used on the substrate, and the substrate effect has a significant impact on the molecular motion behavior of the films. However, so far, the mechanism of how the substrate interface affects the molecular motion behavior of the whole polymer film is not clear. This problem is closely related to the long-range effect of the substrate interface. The fluorinated end-group labeling method is an effective way to study the relaxation behavior of polymer chains. In this paper, the fluorinated end-group labeled PMMA (PMMA-ec-FMA) bilayer film was constructed by using contact angle (CA) and X-ray photoelectron spectroscopy (XPS). The migration process of PMMA labeled with fluorinated end groups from the lower layer to the upper layer was studied. The diffusion kinetics and the depth of influence of substrate effect on the mobility of molecular chains were studied. The diffusion coefficient D of PMMA-ec-FMA can be calculated from Fickian equation. The effect of the thickness h of the upper layer on the diffusion behavior of labeled PMMA molecules is studied. It is found that the diffusion coefficient of PMMA is dependent on the thickness h of the upper layer. There are three intervals of D with the change of h: i) when the film thickness is higher than a certain critical value (i). When the film thickness drops to the critical thickness hup, D begins to decrease with the decrease of h; when the film thickness drops to the critical thickness hup, D begins to decrease with the decrease of h; when the film thickness continues to drop to another critical thickness hlow (h hlow), D reaches another constant value. When the molecular weight of the upper and lower layers is different, it is called molecular weight asymmetry system; when the molecular weight of the upper and lower layers is similar, it is called molecular weight symmetry system. The change trend of the molecular weight of PMMA-ec-FMA is different: the hup/Rg in the molecular weight symmetric system keeps constant, which indicates that the influence of membrane confinement on the diffusion behavior of the molecular chain is closely related to the molecular size of the chain. (2) The relationship between the diffusion coefficient of PMMA-ec-FMA and its molecular weight and temperature in the asymmetric system was studied. It was found that the molecular weight of PMMA-ec-FMA reached the upper critical platform in a power relationship of - 0.58. At the same time, the activation energy of De increased gradually with the increase of temperature and the activation energy was 49 3 kJ 65 1. The apparent diffusion coefficients measured in this paper are larger than those in bulk, less dependent on molecular weight and lower activation energies. The reason may be that the single-ended labeled PMMA chains are pulled upward by the fluorinated end group rather than the whole chain synchronously diffused. (3) Based on the double-layer membrane technology, the thickness of the upper layer is fixed and the activation energy is lower. The transfer depth of substrate effect in polymer film was studied by changing the film thickness. The critical time (t *) of the surface physical and chemical properties of the bilayer film changing with heat treatment was used to reflect the time needed for the labeled polymer to migrate through the upper film to the surface. It is found that the transfer depths of Si/SiOx and Si-H in PMMA (Mn=67 kg.mol-1) films are 69 nm and 37 nm, respectively, and in PS (Mn=43.3 nm) at 150 C. The transfer depths of Si/SiOx and PMMA are 27 nm and 65 nm, respectively. It shows that the transfer depth of substrate effect is closely related to the substrate surface properties. There is H bond between Si/SiOx and PMMA, and the interaction between Si-H and PS is stronger than that between Si/SiOx. Depth. (4) Molecular weight dependence of the transfer depth of the substrate effect was studied. It was found that the transfer depth of the Si/SiOx substrate to PMMA increased gradually with the increase of the molecular weight and could be normalized to 9.5Rg. It was shown that the effect of the substrate effect on the film dynamics was dependent on the molecular chain size. It is found that the depth of substrate effect transfer decreases with the increase of temperature, indicating that the increase of temperature weakens the effect of substrate effect on the molecular dynamics of polymers. Chain motility is activated by increasing temperature, which competes with each other. Therefore, increasing temperature will weaken the influence of substrate effect on chain motility and thus reduce the depth of transfer of substrate effect.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O632.52;TB383.2
【相似文献】
相关期刊论文 前10条
1 胡初潜;膜结构对钛/铌快速扩散行为的影响[J];稀有金属;1994年05期
2 ;焊缝中氢的扩散行为及影响因素[J];四川冶金;2013年04期
3 曾强,马书伟,郑运荣,张德堂,王丽娟;铼在镍中的扩散行为研究[J];稀有金属;2002年01期
4 刘朝霞,佟铭明,黄成江,李殿中;低碳钢形变诱导铁素体相变过程中碳的扩散行为[J];金属学报;2004年09期
5 李丽媛;陈奕;许中强;周健;王仰东;贺鹤勇;杨为民;;烃类分子在分子筛中扩散行为研究进展[J];化工进展;2014年03期
6 伍怀龙,赵国庆,周筑颖,杨福家,,龙兴贵,翟国良,杨时礼,赵鹏翼;氘在钛中的扩散行为[J];核技术;1996年06期
7 李海斌;黄庆学;帅美荣;王建梅;马勤;;锡原子在25钢表面的扩散行为[J];材料热处理学报;2014年03期
8 杨海瑞,吕俊复,刘青,岳光溪;快速床提升管内颗粒的扩散行为研究[J];中国粉体技术;1999年06期
9 程宏涛;杨建国;刘雪松;方洪渊;;铜/锡界面间扩散行为分子动力学模拟[J];焊接学报;2009年05期
10 杨本福,曹小华,罗顺忠;用热解吸法研究锂陶瓷中氚扩散行为[J];核技术;2001年04期
相关会议论文 前10条
1 吴仲成;彭述明;杨茂年;刘琼;;氦在金属钛中的扩散行为[A];中国工程物理研究院科技年报(2002)[C];2002年
2 蔡良琬;崔勵仙;梁植权;;核糖核酸在不同离子强度下的扩散行为[A];中国生理科学会学术会议论文摘要汇编(生物化学)[C];1964年
3 赖君玲;刘玲爽;鞠秀芳;刘黎明;宋丽娟;孙兆林;;频率响应法研究噻吩和苯在不同分子筛上的吸附和扩散行为[A];第十五届全国分子筛学术大会论文集[C];2009年
4 杜晓明;李静;吴尔冬;;氢气在离子交换型X沸石中扩散行为的分子动力学研究[A];第十七届全国分子筛学术大会会议论文集[C];2013年
5 陈长安;黄志勇;刘从贤;刘卫东;陈世勋;武志刚;罗言明;;室温、高压氚在HR-2不锈钢中的扩散行为[A];中国工程物理研究院科技年报(2000)[C];2000年
6 白波;郭洪波;宫声凯;;DD6/Ru扩散偶的界面扩散行为研究[A];2011中国材料研讨会论文摘要集[C];2011年
7 何学浩;;带电大分子在非对称通道内的扩散行为[A];中国化学会第29届学术年会摘要集——第08分会:高分子科学[C];2014年
8 杜世萱;张余洋;郭伟;江楠;高鸿钧;;电场作用下分子在金属单晶表面自组装及扩散行为的研究[A];中国化学会第27届学术年会第14分会场摘要集[C];2010年
9 刘百军;李建刚;;联苯分子在Al_2O_3膜中扩散行为的研究[A];第十一届全国青年催化学术会议论文集(下)[C];2007年
10 Xuehao He;;带电大分子在非对称通道内的扩散行为(英文)[A];中国化学会第29届学术年会摘要集——第08分会:高分子科学[C];2014年
相关博士学位论文 前3条
1 任晓;强磁场作用下镍系合金元素扩散行为研究[D];大连理工大学;2010年
2 李东刚;异质金属体系扩散行为和界面反应的强磁场控制研究[D];东北大学;2009年
3 贾彦彦;碲在镍中的扩散行为与晶间脆化机理的研究[D];中国科学院研究生院(上海应用物理研究所);2013年
相关硕士学位论文 前10条
1 郭锐;热轧搪瓷钢中氢扩散行为研究[D];安徽工业大学;2016年
2 张旖芝;端基标记法研究受限体系PMMA扩散行为与基底效应的传递深度[D];浙江理工大学;2017年
3 鲁燕;强磁场作用下碳在纯铁中的扩散行为及其机理研究[D];东北大学;2011年
4 玄晓阳;拉应力下10CrSiNiCu钢氢扩散行为研究[D];哈尔滨工程大学;2013年
5 谢武成;碘在矿物上的吸附与扩散行为研究[D];中国原子能科学研究院;2001年
6 王文丽;强磁场下不同磁性组元的扩散行为研究[D];东北大学;2012年
7 刘恋;CH_4、CO_2及其混合气体在ZIF-8材料中扩散行为的分子模拟研究[D];江西师范大学;2013年
8 尹亮;柴油机冷起动碳氢化合物在分子筛上吸附及扩散行为研究[D];湖南大学;2013年
9 马晓敏;强磁场下Al/Cu和Al/Mg二元金属体系扩散行为研究[D];东北大学;2010年
10 黄燕;硅(100)表面纳米结构及附加硅的沉积扩散行为[D];苏州大学;2004年
本文编号:2215514
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2215514.html