基于时间序列MODIS的农作物类型空间制图方法
发布时间:2018-09-03 20:10
【摘要】:为快速获取大范围种植结构复杂区域的作物种植面积,以MODIS数据为数据源,选择归一化植被指数(Normalized difference vegetation index,NDVI)、增强植被指数(Enhanced vegetation index,EVI)、宽动态植被指数(Wide dynamic range vegetation index,WDRVI)、地表水分指数(Land surface water index,LSWI)、归一化雪被指数(Normalized difference snow index,NDSI)5种特征,结合同步的实地调查样本点,采用支持向量机算法(Support vector machines,SVM)提取黑龙江省主要农作物的种植面积。研究表明,在待选特征中NDVI、EVI与LSWI指数组合取得了最高的分类精度,总体分类精度为74.18%,Kappa系数为0.60;支持向量机算法与最大似然算法、随机森林算法相比,分类精度更优。该方法为在大区域中提取农作物种植面积提供了参考价值。
[Abstract]:In order to quickly obtain crop planting area in a large area with complex planting structure, MODIS data is used as the data source. Five characteristics of normalized vegetation index (Normalized difference vegetation index,NDVI), enhanced vegetation index (Enhanced vegetation index,EVI), wide dynamic vegetation index (Wide dynamic range vegetation index,WDRVI), surface water index (Land surface water index,LSWI) and normalized snow cover index (Normalized difference snow index,NDSI) were selected. Support vector machine (Support vector machines,SVM) algorithm is used to extract the planting area of main crops in Heilongjiang province. The research shows that the combination of NDVI,EVI and LSWI index achieves the highest classification accuracy in the selected features, the overall classification accuracy is 74.18Kappa coefficient 0.60, and the support vector machine algorithm is better than the maximum likelihood algorithm and stochastic forest algorithm. This method provides a reference value for the extraction of crop planting area in large area.
【作者单位】: 中国农业大学信息与电气工程学院;黑龙江省农垦科学院科技情报研究所;
【基金】:国家自然科学基金项目(41671418、41471342、41371326) 国家高技术研究发展计划(863计划)项目(2013AA10230103)
【分类号】:S127;TP79
[Abstract]:In order to quickly obtain crop planting area in a large area with complex planting structure, MODIS data is used as the data source. Five characteristics of normalized vegetation index (Normalized difference vegetation index,NDVI), enhanced vegetation index (Enhanced vegetation index,EVI), wide dynamic vegetation index (Wide dynamic range vegetation index,WDRVI), surface water index (Land surface water index,LSWI) and normalized snow cover index (Normalized difference snow index,NDSI) were selected. Support vector machine (Support vector machines,SVM) algorithm is used to extract the planting area of main crops in Heilongjiang province. The research shows that the combination of NDVI,EVI and LSWI index achieves the highest classification accuracy in the selected features, the overall classification accuracy is 74.18Kappa coefficient 0.60, and the support vector machine algorithm is better than the maximum likelihood algorithm and stochastic forest algorithm. This method provides a reference value for the extraction of crop planting area in large area.
【作者单位】: 中国农业大学信息与电气工程学院;黑龙江省农垦科学院科技情报研究所;
【基金】:国家自然科学基金项目(41671418、41471342、41371326) 国家高技术研究发展计划(863计划)项目(2013AA10230103)
【分类号】:S127;TP79
【相似文献】
相关期刊论文 前10条
1 向大芳;;支持向量机云检测方法的稳定性分析研究[J];计算机应用与软件;2013年01期
2 任能;谷波;;冷壁面霜层生长的支持向量机模型[J];制冷学报;2007年03期
3 赵春晖;陈万海;万建;;一种改进的多类支持向量机超光谱图像分类方法[J];智能系统学报;2008年01期
4 曹志坤;谷波;顾众;;基于改进的支持向量机制冷陈列柜优化模型[J];上海交通大学学报;2009年09期
5 张红亮;王水林;吕颖慧;尹小涛;;爆破震动效应的支持向量机分析预测[J];矿业研究与开发;2007年04期
6 欧敏;林从谋;;支持向量机预测高边坡爆破质点振动速度[J];金属矿山;2011年06期
7 周建永;;支持向量机修正灰色模型在工程价格预测中的应用[J];科技通报;2013年07期
8 李波;郭凤菊;李新军;;一种多属性约简支持向量机混合分类方法[J];昆明理工大学学报(理工版);2006年04期
9 潘翔;李洁冰;;一种基于支持向量机的目标定位方法[J];浙江大学学报(工学版);2006年03期
10 史秀志;董凯程;邱贤阳;陈小康;;基于支持向量机回归爆破振动速度预测分析[J];工程爆破;2009年03期
相关会议论文 前4条
1 侯澍e,
本文编号:2221046
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2221046.html