偏心双桨搅拌流场及效果分析
发布时间:2018-11-08 13:44
【摘要】:生产工艺中需要聚苯乙烯粒子在液相苯乙烯中均匀悬浮与混合,要求底部固相不堆积,固相浓度分布均匀。为了达到理想的搅拌效果,本文研究了双桨的偏心率及转速对搅拌混合效果的影响。以底部椭圆封头,无挡板的反应釜和双层6折叶的开启涡轮式搅拌器为研究对象,用Fluent软件对搅拌器偏心时水的搅拌流场及聚苯乙烯粒子-苯乙烯固液搅拌进行数值模拟。模拟了不同偏心率和转速对搅拌流型、聚苯乙烯粒子浓度分布及能耗的影响,并用粒子图像测速法(PIV)实验验证水的搅拌流场。结果表明,偏心搅拌可使流体速度得到增加,桨叶下方的搅拌死区得到有效抑制;偏心率增大导致两侧的速度偏差越来越大,能量分布不均匀;偏心搅拌的聚苯乙烯粒子浓度分布比对中搅拌的更为均匀,可改善粒子在苯乙烯中的悬浮效果;相同搅拌效果的情况下,偏心率为0.15的功率消耗是对中搅拌的85%;对该固液搅拌时的最佳偏心率和最佳转速分别为0.15和95 r/min,此时固液搅拌混合效果最好,固相浓度分布最为均匀,消耗功率相对较少。
[Abstract]:In the production process, polystyrene particles should be suspended and mixed uniformly in liquid styrene, and the solid phase should not be stacked at the bottom and the concentration of solid phase should be uniform. In order to achieve the ideal mixing effect, the effects of eccentricity and rotational speed of the two propellers on the mixing effect are studied in this paper. Taking the bottom elliptical head, the reactor without baffle and the open turbine agitator with double layer 40% discount blade as the research object, the flow field of water stirring and the solid liquid stirring of polystyrene particle and styrene were numerically simulated by Fluent software. The effects of eccentricity and rotational speed on agitation flow pattern, concentration distribution of polystyrene particles and energy consumption were simulated. The (PIV) experiment of particle image velocimetry was used to verify the mixing flow field of water. The results show that eccentricity agitation can increase the velocity of the fluid and restrain the dead zone under the blade effectively, and the increase of eccentricity leads to the increasing deviation of velocity on both sides and the uneven distribution of energy. The concentration distribution of polystyrene particles in eccentrically stirred is more uniform than that in stirring, which can improve the suspending effect of particles in styrene, and the power consumption of the eccentric ratio of 0.15 is 85% of that of the middle stirring under the same stirring effect. The optimum eccentricity and rotation speed are 0.15 and 95 r / min, respectively. At this time, the mixing effect is the best, the distribution of solid concentration is the most uniform, and the power consumption is relatively low.
【作者单位】: 上海应用技术大学机械工程学院;南京工业大学机械与动力工程学院;
【分类号】:TQ325.2;TQ027.2
本文编号:2318665
[Abstract]:In the production process, polystyrene particles should be suspended and mixed uniformly in liquid styrene, and the solid phase should not be stacked at the bottom and the concentration of solid phase should be uniform. In order to achieve the ideal mixing effect, the effects of eccentricity and rotational speed of the two propellers on the mixing effect are studied in this paper. Taking the bottom elliptical head, the reactor without baffle and the open turbine agitator with double layer 40% discount blade as the research object, the flow field of water stirring and the solid liquid stirring of polystyrene particle and styrene were numerically simulated by Fluent software. The effects of eccentricity and rotational speed on agitation flow pattern, concentration distribution of polystyrene particles and energy consumption were simulated. The (PIV) experiment of particle image velocimetry was used to verify the mixing flow field of water. The results show that eccentricity agitation can increase the velocity of the fluid and restrain the dead zone under the blade effectively, and the increase of eccentricity leads to the increasing deviation of velocity on both sides and the uneven distribution of energy. The concentration distribution of polystyrene particles in eccentrically stirred is more uniform than that in stirring, which can improve the suspending effect of particles in styrene, and the power consumption of the eccentric ratio of 0.15 is 85% of that of the middle stirring under the same stirring effect. The optimum eccentricity and rotation speed are 0.15 and 95 r / min, respectively. At this time, the mixing effect is the best, the distribution of solid concentration is the most uniform, and the power consumption is relatively low.
【作者单位】: 上海应用技术大学机械工程学院;南京工业大学机械与动力工程学院;
【分类号】:TQ325.2;TQ027.2
【相似文献】
相关期刊论文 前7条
1 ;拉伸、持久、蠕变试验的偏心率计算表[J];航空材料;1979年02期
2 齐红元 ,朱衡君 ,邱成 ,徐趁肖 ,肖春燕 ,杜凤山 ,刘才;精密金属挤压椭圆型材偏心率参数与模腔优化分析[J];模具工业;2001年12期
3 侯云福,郑华;СГДТ套管偏心率解释新模型[J];测井技术;2002年02期
4 李洋;林日亿;张为文;王新伟;陈红伟;;偏心对油套环空换热影响的研究[J];化学工程与装备;2013年09期
5 魏丽婷;;外压薄壁容器的稳定性分析[J];价值工程;2013年12期
6 ;高温力学性能二级人员取证复习参考题(持久部分之四)[J];理化检验(物理分册);1999年11期
7 ;[J];;年期
相关会议论文 前2条
1 傅毅;徐亚丰;赵鑫;;不同偏心率十字形钢管混凝土芯柱耐火极限分析[A];科技创新与产业发展(A卷)——第七届沈阳科学学术年会暨浑南高新技术产业发展论坛文集[C];2010年
2 吴风雷;付永强;杨旭海;;卫星定点保持软件控制目标设定与控制方向设定控制效果差异分析[A];全国第十二届空间及运动体控制技术学术会议论文集[C];2006年
相关硕士学位论文 前2条
1 朱康桥;偏心率的改变对大底盘超限高层结构抗震性能的影响[D];南昌大学;2015年
2 周坤;偏心搅拌槽内固液两相流动特性的研究[D];北京化工大学;2015年
,本文编号:2318665
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2318665.html